Quillen Cohomology of Operadic Algebras and Obstruction Theory

Michael A. Mandell

Indiana University

Banff Workshop on Functor Calculus and Operads
March 16, 2011
Outline

1. Introduction to Quillen homology and cohomology of operadic algebras
2. Structure of Quillen homology
3. Postnikov towers and obstructions
4. Application: BP
Introduction to Quillen homology and cohomology of operadic algebras

Structure of Quillen homology

Postnikov towers and obstructions

Application: \(BP\)
Outline

1. Introduction to Quillen homology and cohomology of operadic algebras
2. Structure of Quillen homology
3. Postnikov towers and obstructions
4. Application: BP
Outline

1. Introduction to Quillen homology and cohomology of operadic algebras
2. Structure of Quillen homology
3. Postnikov towers and obstructions
4. Application: BP
General Context

- A closed model category \mathcal{M}
- Assume that subcategory of abelian objects \mathcal{A} also forms a model category
- With fibrations and weak equivalences as in \mathcal{M}
- And assume that the forgetful functor has a left adjoint Ab ("abelianization")

Definition

Quillen homology is the left derived functor of abelianization. Quillen cohomology with coefficients in $N \in \mathcal{A}$ is $[\cdot, N]$.
Quillen Homology and Cohomology

General Context

- A closed model category \mathcal{M}
- Assume that subcategory of abelian objects \mathcal{A} also forms a model category
 - With fibrations and weak equivalences as in \mathcal{M}
 - And assume that the forgetful functor has a left adjoint Ab ("abelianization")

Definition

Quillen homology is the left derived functor of abelianization. Quillen cohomology with coefficients in $N \in \mathcal{A}$ is $[_, N]$.
Introduction

Quillen Homology and Cohomology

General Context

- A closed model category \mathcal{M}
- Assume that subcategory of abelian objects \mathcal{A} also forms a model category
- With fibrations and weak equivalences as in \mathcal{M}
- And assume that the forgetful functor has a left adjoint Ab ("abelianization")

Definition

Quillen homology is the left derived functor of abelianization. Quillen cohomology with coefficients in $N \in \mathcal{A}$ is $[-, N]$.
Quillen Homology and Cohomology

General Context

- A closed model category \mathcal{M}
- Assume that subcategory of abelian objects \mathcal{A} also forms a model category
- With fibrations and weak equivalences as in \mathcal{M}
- And assume that the forgetful functor has a left adjoint Ab ("abelianization")

Definition

Quillen homology is the left derived functor of abelianization. Quillen cohomology with coefficients in $N \in \mathcal{A}$ is $[-, N]$.
Quillen Homology and Cohomology

General Context

- A closed model category \mathcal{M}
- Assume that subcategory of abelian objects \mathcal{A} also forms a model category
- With fibrations and weak equivalences as in \mathcal{M}
- And assume that the forgetful functor has a left adjoint Ab ("abelianization")

Definition

Quillen homology is the left derived functor of abelianization. Quillen cohomology with coefficients in $N \in \mathcal{A}$ is $[_, N]$.

Abelian Objects in Operadic Algebras

Let \mathcal{O} be an operad in chain cxs of abelian groups or modules. Assume $\mathcal{O}(0) = 0$.

Question
What is an abelian object in the category of \mathcal{O}-algebras?

Must have structure map $\mathcal{O}(m) \otimes N^\otimes m \to N$ be zero for $m > 1$.
Just has the structure of an R-module for $R = \mathcal{O}(1)$.
Equivalently, the structure of an algebra over \mathcal{I}_R.

Answer
An \mathcal{I}_R-algebra = R-module.
Abelian Objects in Operadic Algebras

Let \mathcal{O} be an operad in chain cxs of abelian groups or modules. Assume $\mathcal{O}(0) = 0$.

Question
What is an abelian object in the category of \mathcal{O}-algebras?

Must have structure map $\mathcal{O}(m) \otimes N^\otimes m \rightarrow N$ be zero for $m > 1$.
Just has the structure of an R-module for $R = \mathcal{O}(1)$.
Equivalently, the structure of an algebra over \mathcal{I}_R.

Answer
An \mathcal{I}_R-algebra = R-module.
Abelian Objects in Operadic Algebras

Let \mathcal{O} be an operad in chain cxs of abelian groups or modules. Assume $\mathcal{O}(0) = 0$.

Question

What is an abelian object in the category of \mathcal{O}-algebras?

Must have structure map $\mathcal{O}(m) \otimes N^\otimes m \to N$ be zero for $m > 1$.

Just has the structure of an R-module for $R = \mathcal{O}(1)$.

Equivalently, the structure of an algebra over \mathcal{I}_R.

Answer

An \mathcal{I}_R-algebra = R-module.
Let \mathcal{O} be an operad in chain cxs of abelian groups or modules. Assume $\mathcal{O}(0) = 0.$

Question

What is an abelian object in the category of \mathcal{O}-algebras?

Must have structure map $\mathcal{O}(m) \otimes N^m \to N$ be zero for $m > 1.$ Just has the structure of an R-module for $R = \mathcal{O}(1).$

Equivalently, the structure of an algebra over $\mathcal{I}_R.$

Answer

An \mathcal{I}_R-algebra $= R$-module.
Abelian Objects in Operadic Algebras

Let \mathcal{O} be an operad in chain cxs of abelian groups or modules. Assume $\mathcal{O}(0) = 0$.

Question

What is an abelian object in the category of \mathcal{O}-algebras?

Must have structure map $\mathcal{O}(m) \otimes N^\otimes m \to N$ be zero for $m > 1$.

Just has the structure of an R-module for $R = \mathcal{O}(1)$.

Equivalently, the structure of an algebra over \mathcal{I}_R.

Answer

An \mathcal{I}_R-algebra = R-module.
Let \(\mathcal{O} \) be an operad in chain cxs of abelian groups or modules. Assume \(\mathcal{O}(0) = 0 \).

Question

What is an abelian object in the category of \(\mathcal{O} \)-algebras?

Must have structure map \(\mathcal{O}(m) \otimes N^m \to N \) be zero for \(m > 1 \).

Just has the structure of an \(R \)-module for \(R = \mathcal{O}(1) \).

Equivalently, the structure of an algebra over \(\mathcal{I}_R \).

Answer

An \(\mathcal{I}_R \)-algebra = \(R \)-module.
Abelianization = Indecomposables

Forgetful functor from abelian \mathcal{O}-algebras to \mathcal{O}-algebras is “restriction of scalars” from \mathcal{I}_R-algebras to \mathcal{O}-algebras along $\mathcal{O} \to \mathcal{I}_R$.

Left adjoint is “extension of scalars”

$$\mathcal{I}_R \circ \mathcal{O} (-)$$

which is indecomposables:

$$\mathcal{I}_R \circ \mathcal{O} \circ A \longrightarrow \mathcal{I}_R \circ A \longrightarrow QA$$

$$R \otimes (\bigoplus \mathcal{O}(n) \otimes \Sigma_n A^\otimes n) \longrightarrow R \otimes A \longrightarrow QA$$
Abelianization = Indecomposables

Forgetful functor from abelian \mathcal{O}-algebras to \mathcal{O}-algebras is “restriction of scalars” from \mathcal{I}_R-algebras to \mathcal{O}-algebras along $\mathcal{O} \to \mathcal{I}_R$.

Left adjoint is “extension of scalars”

$$\mathcal{I}_R \circ \mathcal{O} (_)$$

which is indecomposables:

$$\mathcal{I}_R \circ \mathcal{O} \circ A \longrightarrow \mathcal{I}_R \circ A \longrightarrow QA$$

$$R \otimes (\bigoplus \mathcal{O}(n) \otimes_{\Sigma_n} A^\otimes n) \longrightarrow R \otimes A \longrightarrow QA$$
Abelianization = Indecomposables

Forgetful functor from abelian \mathcal{O}-algebras to \mathcal{O}-algebras is “restriction of scalars” from \mathcal{I}_R-algebras to \mathcal{O}-algebras along $\mathcal{O} \to \mathcal{I}_R$.

Left adjoint is “extension of scalars”

\[\mathcal{I}_R \circ \mathcal{O} (-) \]

which is indecomposables:

\[\mathcal{I}_R \circ \mathcal{O} \circ A \xrightarrow{\sim} \mathcal{I}_R \circ A \to QA \]

\[R \otimes (\bigoplus \mathcal{O}(n) \otimes \Sigma_n A \otimes^n) \xrightarrow{\sim} R \otimes A \to QA \]
Abelianization = Indecomposables

Forgetful functor from abelian \mathcal{O}-algebras to \mathcal{O}-algebras is “restriction of scalars” from \mathcal{I}_R-algebras to \mathcal{O}-algebras along $\mathcal{O} \to \mathcal{I}_R$.

Left adjoint is “extension of scalars”

$$\mathcal{I}_R \circ \mathcal{O} \ (\cdot)$$

which is indecomposables:

$$R \otimes (\bigoplus \mathcal{O}(n) \otimes_{\Sigma_n} A^{\otimes n}) \xrightarrow{\sim} R \otimes A \to QA$$
Abelianization = Indecomposables

Forgetful functor from abelian \mathcal{O}-algebras to \mathcal{O}-algebras is “restriction of scalars” from \mathcal{I}_R-algebras to \mathcal{O}-algebras along $\mathcal{O} \to \mathcal{I}_R$.

Left adjoint is “extension of scalars”

$\mathcal{I}_R \circ \mathcal{O} (-)$

which is indecomposables:

$\mathcal{I}_R \circ \mathcal{O} \circ A \rightarrow \mathcal{I}_R \circ A \rightarrow QA$

$R \otimes (\bigoplus_{n \geq 1} \mathcal{O}(n) \otimes \Sigma_n A^\otimes n) \rightarrow R \otimes A \rightarrow QA$

$R \otimes R \otimes A \rightarrow R \otimes A \rightarrow A$
Quillen Homology = Koszul Dual Coalgebra

Quillen homology = Left derived functor of \(I_R \circ O (-) \)

We know how to do this left derived functor much more generally than we know that \(O \)-algebras are a closed model category.

Choose a flat right \(O \)-module approximation \(E \) of \(I_R \) and look at \(E \circ O (-) \).

If \(R \) is commutative and \(O \) nice, can take \(E = (DO \circ O, d) \).

Then \(E \circ O A = B_O A \) is the “bar dual” or “Koszul dual” \(DO \)-coalgebra of \(A \).
Quillen homology = Left derived functor of $\mathcal{I}_R \circ \mathcal{O} \,(-)$

We know how to do this left derived functor much more generally than we know that \mathcal{O}-algebras are a closed model category.

Choose a flat right \mathcal{O}-module approximation \mathcal{E} of \mathcal{I}_R and look at $\mathcal{E} \circ \mathcal{O} \,(-)$.

If R is commutative and \mathcal{O} nice, can take $\mathcal{E} = (D\mathcal{O} \circ \mathcal{O}, d)$.

Then $\mathcal{E} \circ \mathcal{O} \, A = B\mathcal{O} \, A$ is the “bar dual” or “Koszul dual” $D\mathcal{O}$-coalgebra of A.
Quillen Homology = Koszul Dual Coalgebra

Quillen homology = Left derived functor of $\mathcal{I}_R \circ \mathcal{O} (-)$

We know how to do this left derived functor much more generally than we know that \mathcal{O}-algebras are a closed model category.

Choose a flat right \mathcal{O}-module approximation \mathcal{E} of \mathcal{I}_R and look at $\mathcal{E} \circ \mathcal{O} (-)$.

If R is commutative and \mathcal{O} nice, can take $\mathcal{E} = (D\mathcal{O} \circ \mathcal{O}, d)$.

Then $\mathcal{E} \circ \mathcal{O} A = B\mathcal{O} A$ is the “bar dual” or “Koszul dual” $D\mathcal{O}$-coalgebra of A.
Quillen Homology = Koszul Dual Coalgebra

Quillen homology = Left derived functor of $\mathcal{I}_R \circ \mathcal{O} (\cdot)$

We know how to do this left derived functor much more generally than we know that \mathcal{O}-algebras are a closed model category.

Choose a flat right \mathcal{O}-module approximation \mathcal{E} of \mathcal{I}_R and look at $\mathcal{E} \circ \mathcal{O} (\cdot)$.

If R is commutative and \mathcal{O} nice, can take $\mathcal{E} = (D\mathcal{O} \circ \mathcal{O}, d)$.

Then $\mathcal{E} \circ \mathcal{O} A = B_{\mathcal{O}} A$ is the “bar dual” or “Koszul dual” $D\mathcal{O}$-coalgebra of A.
Homotopical Origin of Coalgebra Structure

Now don’t assume that R is commutative but do assume that \mathcal{O}-algebras form a closed model category.

Then we have a Quillen adjunction

$$Q : \mathcal{O}\text{-Alg} \leftrightarrow \mathcal{I}_R\text{-Alg} : Z$$

and a derived adjunction

$$Q^L : \text{Ho}(\mathcal{O}\text{-Alg}) \leftrightarrow \text{Ho}(\mathcal{I}_R\text{-Alg}) : Z^R$$

$Q^L A$ is a coalgebra over the comonad $Q^L Z^R$.

Goodwillie Calculus: $Q^L Z^R (X) = \bigoplus (D(n) \otimes X^\otimes n)_{h\Sigma_n}$
Homotopical Origin of Coalgebra Structure

Now don’t assume that R is commutative but do assume that \mathcal{O}-algebras form a closed model category.

Then we have a Quillen adjunction

\[\mathbb{Q} : \mathcal{O}\text{-}\text{Alg} \leftrightarrow \mathcal{I}_R\text{-}\text{Alg} : \mathbb{Z} \]

and a derived adjunction

\[\mathbb{Q}^L : \text{Ho}(\mathcal{O}\text{-}\text{Alg}) \leftrightarrow \text{Ho}(\mathcal{I}_R\text{-}\text{Alg}) : \mathbb{Z}^R \]

$\mathbb{Q}^L A$ is a coalgebra over the comonad $\mathbb{Q}^L \mathbb{Z}^R$.

Goodwillie Calculus: $\mathbb{Q}^L \mathbb{Z}^R (X) = \bigoplus (D(n) \otimes X^\otimes n)_{h\Sigma_n}$
Homotopical Origin of Coalgebra Structure

Now don’t assume that R is commutative but do assume that \mathcal{O}-algebras form a closed model category.

Then we have a Quillen adjunction

$$Q : \mathcal{O} \text{-Alg} \leftrightarrow I_R \text{-Alg} : Z$$

and a derived adjunction

$$Q^L : \text{Ho}(\mathcal{O} \text{-Alg}) \leftrightarrow \text{Ho}(I_R \text{-Alg}) : Z^R$$

$Q^L A$ is a coalgebra over the comonad $Q^L Z^R$.

Goodwillie Calculus:

$$Q^L Z^R(X) = \bigoplus (D(n) \otimes X^\otimes n)_{h\Sigma_n}$$
Now don’t assume that R is commutative but do assume that \mathcal{O}-algebras form a closed model category.

Then we have a Quillen adjunction

$$Q : \mathcal{O} \text{-Alg} \leftrightarrow \mathcal{I}_R \text{-Alg} : Z$$

and a derived adjunction

$$Q^L : \text{Ho}(\mathcal{O} \text{-Alg}) \leftrightarrow \text{Ho}(\mathcal{I}_R \text{-Alg}) : Z^R$$

$Q^L A$ is a coalgebra over the comonad $Q^L Z^R$.

Goodwillie Calculus: $Q^L Z^R(X) = \bigoplus (D(n) \otimes X^\otimes n)_{h \Sigma_n}$
Homotopical Origin of Coalgebra Structure

Now don’t assume that R is commutative but do assume that \mathcal{O}-algebras form a closed model category.

Then we have a Quillen adjunction

$$Q: \mathcal{O}\text{-Alg} \leftrightarrow \mathcal{I}_R\text{-Alg} : Z$$

and a derived adjunction

$$Q^L: \text{Ho}(\mathcal{O}\text{-Alg}) \leftrightarrow \text{Ho}(\mathcal{I}_R\text{-Alg}) : Z^R$$

$Q^L A$ is a coalgebra over the comonad $Q^L Z^R$.

Goodwillie Calculus: $Q^L Z^R(X) = \bigoplus (D(n) \otimes X^\otimes n) h\Sigma_n \otimes R$.
Koszul Duality

(R is commutative, probably a field.)
(O is Σ_* projective.)

If A is connected, you can recover A from DO structure on $B_O A$
($= Q^L A$):

$$\varinjlim C_O B_O A \cong A$$

[Getzler-Jones], [Fresse]

C_O is a cobar coalgebra for DO-coalgebras
That gives a O-alg.
rather than DDO-alg.
Eckmann-Hilton Duality

\[\text{Cell } \text{alg} \]

\[A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow \cdots \rightarrow A \]

\[K \text{O } [\text{S}^n] \rightarrow [\text{S}^n] \leftarrow B^n \]
Eckmann-Hilton Duality

\[
\begin{align*}
A_1 & \leftarrow A_2 \rightarrow A_3 \leftarrow \cdots \leftarrow A \\
\text{In analogy, } & S^n & \cong & \text{Cont.} \\
K & \xrightarrow{\iota} K\mathbb{B}^n \\
KA_1 & \rightarrow KA_2 \rightarrow KA_3 \rightarrow \cdots \rightarrow KA
\end{align*}
\]
Eckmann-Hilton Duality

\[A_1 \leftarrow A_2 \leftarrow A_3 \leftarrow \cdots \leftarrow A \]

\[KA_1 \rightarrow KA_2 \rightarrow KA_3 \rightarrow \cdots \rightarrow KA \]

\[\Rightarrow \text{ Postnikov Tower} \]
Now possibly working in spectra with \mathcal{O} an operad of spaces.

No longer assume $\mathcal{O}(0) = \ast$. Might want unit.
Postnikov Towers for Operadic Algebras

Now possibly working in spectra with \mathcal{O} an operad of spaces. No longer assume $\mathcal{O}(0) = \ast$. Might want unit.
Now possibly working in spectra with \mathcal{O} an operad of spaces. No longer assume $\mathcal{O}(0) = *$. Might want unit.
Postnikov Towers for Operadic Algebras

Now possibly working in spectra with \mathcal{O} an operad of spaces. No longer assume $\mathcal{O}(0) = \ast$. Might want unit.

For any \mathcal{O}-algebra A, tower of \mathcal{O}-modules

$$A \to \cdots \to A_{n+1} \to A_n \to \cdots \to A_0$$

with

- $\pi_iA \to \pi_iA_n$ iso for $i \leq n$
- $\pi_iA_n = 0$ for $i > n$

Problem

Build as a tower of principal fibrations of \mathcal{O}-modules.
Postnikov Towers for Operadic Algebras

Now possibly working in spectra with \mathcal{O} an operad of spaces. No longer assume $\mathcal{O}(0) = \ast$. Might want unit.

For any \mathcal{O}-algebra A, tower of \mathcal{O}-modules

$$A \to \cdots \to A_{n+1} \to A_n \to \cdots \to A_0$$

with

- $\pi_i A \to \pi_i A_n$ iso for $i \leq n$
- $\pi_i A_n = 0$ for $i > n$

Problem

Build as a tower of principal fibrations of \mathcal{O}-modules.
Principal Fibrations

\[A \rightarrow \cdots \rightarrow A_{n+1} \rightarrow A_n \rightarrow \cdots \rightarrow A_0 \]

(For simplicity, assume O augments to comm. operad.)

Work in the category of O-algebras lying over $A_0 = H_{\pi_0}A$.

For an A_0-module M, have the square-zero O-algebra $A_0 \ltimes M = A_0 \vee M$.

We will construct the Postnikov tower with

\[\begin{array}{c}
A_{n+1} \\
\downarrow \\
A_n \\
\downarrow \\
A_0 \ltimes \Sigma^{n+2} H_{\pi_{n+1}}A
\end{array} \]

homotopy fiber squares.
Postnikov Towers and Obstructions

Principal Fibrations

\[A \to \cdots \to A_{n+1} \to A_n \to \cdots \to A_0 \]

(For simplicity, assume \(\mathcal{O} \) augments to comm. operad.)

Work in the category of \(\mathcal{O} \)-algebras lying over \(A_0 = H\pi_0 A \).

For an \(A_0 \)-module \(M \), have the square-zero \(\mathcal{O} \)-algebra \(A_0 \ltimes M = A_0 \vee M \).

We will construct the Postnikov tower with

\[A_{n+1} \to A_0 \]
\[A_n \to A_0 \ltimes \Sigma^{n+2} H\pi_{n+1} A \]

homotopy fiber squares.
Principal Fibrations

\[A \rightarrow \cdots \rightarrow A_{n+1} \rightarrow A_n \rightarrow \cdots \rightarrow A_0 \]

(For simplicity, assume \(\mathcal{O} \) augments to comm. operad.)

Work in the category of \(\mathcal{O} \)-algebras lying over \(A_0 = H\pi_0 A \).

For an \(A_0 \)-module \(M \), have the square-zero \(\mathcal{O} \)-algebra
\[A_0 \ltimes M = A_0 \lor M. \]

We will construct the Postnikov tower with

\[A_{n+1} \rightarrow A_0 \]
\[A_n \rightarrow A_0 \ltimes \Sigma^{n+2} H\pi_{n+1} A \]

homotopy fiber squares.
Principal Fibrations

\[A \to \cdots \to A_{n+1} \to A_n \to \cdots \to A_0 \]

(For simplicity, assume \(O \) augments to comm. operad.)

Work in the category of \(O \)-algebras lying over \(A_0 = H_{\pi_0}A \).

For an \(A_0 \)-module \(M \), have the square-zero \(O \)-algebra \(A_0 \ltimes M = A_0 \lor M \).

We will construct the Postnikov tower with homotopy fiber squares.
Topological (André-)Quillen Cohomology

The map

$$A_n \to A_0 \times \Sigma^{n+2} H_{\pi n+1}A$$

is an element of topological Quillen cohomology

$$k_O^{n+1} \in D^{n+2}(A_n; H_{\pi n+1}A)$$

Step 1. Have extension of scalars isomorphism

$$\text{Ho}(\mathcal{O}\text{-Alg}/A_0)(C, A_0 \times M) \cong \text{Ho}(\mathcal{O}\text{-}A_0\text{-Alg}/A_0)(A_0 \wedge C, A_0 \times M)$$

Now in context of augmented algebras.
The map

\[A_n \rightarrow A_0 \ltimes \Sigma^{n+2} H\pi_{n+1} A \]

is an element of topological Quillen cohomology

\[k^n_{O} \in D^{n+2}(A_n; H\pi_{n+1} A) \]

Step 1. Have extension of scalars isomorphism

\[\text{Ho}(\mathcal{O}\text{-Alg}/A_0)(C, A_0 \ltimes M) \cong \text{Ho}(\mathcal{O}\text{-}A_0\text{-Alg}/A_0)(A_0 \wedge C, A_0 \ltimes M) \]

Now in context of augmented algebras.
Topological (André-)Quillen Cohomology

The map

$$A_n \rightarrow A_0 \times \Sigma^{n+2} H_{\pi n+1}A$$

is an element of topological Quillen cohomology

$$k_{O}^{n+1} \in D^{n+2}(A_n; H_{\pi n+1}A)$$

Step 1. Have extension of scalars isomorphism

$$\text{Ho}(\mathcal{O}\text{-Alg}/A_0)(C, A_0 \ltimes M) \cong \text{Ho}(\mathcal{O}\text{-}A_0\text{-Alg}/A_0)(A_0 \wedge C, A_0 \ltimes M)$$

Now in context of augmented algebras.
Step 2. The augmented/non-unital equivalence

$$\text{Ho}(\mathcal{O}-A_0\text{-Alg}/A_0)(A_0 \land C, A_0 \ltimes M) \cong \text{Ho}(\tilde{\mathcal{O}}-A_0\text{-Alg})(I^R(A_0 \land C), ZM)$$

for $\tilde{\mathcal{O}}$ the non-unital version of \mathcal{O},

$$\tilde{\mathcal{O}}(n) = \begin{cases}
\mathcal{O}(n) & n > 0 \\
* & n = 0
\end{cases}$$

Step 3. The indecomposables/zero-multiplication adjunction

$$\text{Ho}(\tilde{\mathcal{O}}-A_0\text{-Alg})(I^R(A_0 \land C), ZM) \cong \text{Ho}(A_0\text{-Mod})(Q^L I^R(A_0 \land C), M)$$

$$\cong \pi_0 F_{A_0}(Q^L I^R(A_0 \land C), M).$$
Step 2. The augmented/non-unital equivalence

\[\text{Ho}(\mathcal{O}-A_0\text{-Alg}/A_0)(A_0 \wedge C, A_0 \rtimes M) \cong \text{Ho}(\tilde{\mathcal{O}}-A_0\text{-Alg})(I^R(A_0 \wedge C), \mathbb{Z}M) \]

for \(\tilde{\mathcal{O}} \) the non-unital version of \(\mathcal{O} \),

\[\tilde{\mathcal{O}}(n) = \begin{cases} \mathcal{O}(n) & n > 0 \\ * & n = 0 \end{cases} \]

Step 3. The indecomposables/zero-multiplication adjunction

\[\text{Ho}(\tilde{\mathcal{O}}-A_0\text{-Alg})(I^R(A_0 \wedge C), \mathbb{Z}M) \cong \text{Ho}(A_0\text{-Mod})(Q^L I^R(A_0 \wedge C), M) \]

\[\cong \pi_0 F_{A_0}(Q^L I^R(A_0 \wedge C), M). \]
How do you construct the Postnikov tower?

Theorem (Hurewicz Theorem)

Suppose $A \rightarrow B$ is n-connected and M is connected. Then $D_q(B, A; M) = 0$ for $q \leq n$ and $D_{n+1}(B, A; M) = H_{n+1}(B, A; M)$.

Theorem (Universal Coefficient Theorem)

There is a natural spectral sequence

$$E_2^{p,q} = \text{Ext}^{p,q}_{\pi_*A_0}(D_*(B, A; A_0), \pi_*M)$$

converging conditionally to $D^{p+q}(B, A; M)$.
How do you construct the Postnikov tower?

Theorem (Hurewicz Theorem)

Suppose $A \to B$ is n-connected and M is connected. Then $D_q(B, A; M) = 0$ for $q \leq n$ and $D_{n+1}(B, A; M) = H_{n+1}(B, A; M)$.

Theorem (Universal Coefficient Theorem)

There is a natural spectral sequence

$$E_2^{p,q} = \text{Ext}^{p,q}_{\pi_* A_0} (D_*(B, A; A_0), \pi_* M)$$

converging conditionally to $D^{p+q}(B, A; M)$.
How do you construct the Postnikov tower?

Theorem (Hurewicz Theorem)

Suppose $A \to B$ is n-connected and M is connected. Then $D_q(B, A; M) = 0$ for $q \leq n$ and $D_{n+1}(B, A; M) = H_{n+1}(B, A; M)$.

Theorem (Universal Coefficient Theorem)

There is a natural spectral sequence

$$E_2^{p,q} = \text{Ext}^{p,q}_{\pi_0 A}(D_*(B, A; A_0), \pi_* M)$$

converging conditionally to $D^{p+q}(B, A; M)$.
How do you construct the Postnikov tower?

Theorem (Hurewicz Theorem)

Suppose $A \to B$ is n-connected and M is connected. Then $D_q(B, A; M) = 0$ for $q \leq n$ and $D_{n+1}(B, A; M) = H_{n+1}(B, A; M)$.

Theorem (Universal Coefficient Theorem)

There is a natural spectral sequence

$$E_2^{p,q} = \text{Ext}^{p,q}_{\pi_0 A}(D_*(B, A; A_0), \pi_* M)$$

converging conditionally to $D^{p+q}(B, A; M)$.

Apply to the $(n+1)$-connected map $A \to A_{n+1}$.
How do you construct the Postnikov tower? (cont.)

Applying Hurewicz to the \((n + 1)\)-connected map \(A \to A_{n+1}\), we get

\[
D_q(A_n, A; A_0) = 0, \quad q \leq n + 1
\]
\[
D_{n+2}(A_n, A; A_0) = H_{n+2}(A_n, A; A_0) = H_{n+2}(A_{n+1}, A; \pi_0 A)
\]
\[
= \pi_0 A \otimes \pi_{n+1} A
\]

Applying Universal Coefficient, we get

\[
D^{n+2}(A_n, A; H\pi_{n+1} A) = \text{Hom}_{\pi_0 A}(\pi_0 A \otimes \pi_{n+1} A, \pi_{n+1} A)
\]
\[
= \text{Hom}(\pi_{n+1} A, \pi_{n+1} A).
\]
Applying Hurewicz to the \((n + 1)\)-connected map \(A \to A_{n+1}\), we get

\[
D_q(A_{n+1}, A; A_0) = 0, \quad q \leq n + 1
\]

\[
D_{n+2}(A_{n+1}, A; A_0) = H_{n+2}(A_{n+1}, A; A_0) = H_{n+2}(A_{n+1}, A; \pi_0 A)
\]

\[
= \pi_0 A \otimes \pi_{n+1} A
\]

Applying Universal Coefficient, we get

\[
D^{n+2}(A_n, A; H\pi_{n+1} A) = \text{Hom}_{\pi_0 A}(\pi_0 A \otimes \pi_{n+1} A, \pi_{n+1} A)
\]

\[
= \text{Hom}(\pi_{n+1} A, \pi_{n+1} A).
\]
Applying Hurewicz to the \((n + 1)\)-connected map \(A \to A_{n+1}\), we get

\[
D_q(A_{n+1}, A; A_0) = 0, \quad q \leq n + 1
\]

\[
D_{n+2}(A_{n+1}, A; A_0) = H_{n+2}(A_{n+1}, A; A_0) = H_{n+2}(A_{n+1}, A; \pi_0 A)
\]

\[
= \pi_0 A \otimes \pi_{n+1} A
\]

Applying Universal Coefficient, we get

\[
D^{n+2}(A_n, A; H\pi_{n+1} A) = \text{Hom}_{\pi_0 A}(\pi_0 A \otimes \pi_{n+1} A, \pi_{n+1} A)
\]

\[
= \text{Hom}(\pi_{n+1} A, \pi_{n+1} A).
\]
How do you construct the Postnikov tower? (cont.)

Applying Hurewicz to the \((n + 1)\)-connected map \(A \rightarrow A_{n+1}\), we get

\[
D_q(A_{n+1}, A; A_0) = 0, \quad q \leq n + 1
\]

\[
D_{n+2}(A_{n+1}, A; A_0) = H_{n+2}(A_{n+1}, A; A_0) = H_{n+2}(A_{n+1}, A; \pi_0 A) = \pi_0 A \otimes \pi_{n+1} A
\]

Applying Universal Coefficient, we get

\[
D^{n+2}(A_n, A; H\pi_{n+1} A) = \text{Hom}_{\pi_0 A}(\pi_0 A \otimes \pi_{n+1} A, \pi_{n+1} A) = \text{Hom}(\pi_{n+1} A, \pi_{n+1} A).
\]
How do you construct the Postnikov tower? (cont.)

Applying Hurewicz to the \((n+1)\)-connected map \(A \to A_{n+1}\), we get

\[
D_q(A_{n+1}, A; A_0) = 0, \quad q \leq n + 1
\]

\[
D_{n+2}(A_{n+1}, A; A_0) = H_{n+2}(A_{n+1}, A, A_0) = H_{n+2}(A_{n+1}, A; \pi_0A)
\]

\[= \pi_0A \otimes \pi_{n+1}A\]

Applying Universal Coefficient, we get

\[
D^{n+2}(A_n, A; H\pi_{n+1}A) = \text{Hom}_{\pi_0A}(\pi_0A \otimes \pi_{n+1}A, \pi_{n+1}A)
\]

\[= \text{Hom}(\pi_{n+1}A, \pi_{n+1}A).
\]
How do you construct the Postnikov tower? (cont.)

$$D^{n+2}(A_n, A; H\pi_{n+1}A) = \text{Hom}(\pi_{n+1}A, \pi_{n+1}A).$$

Choosing identity element, we get a (homotopy class of) diagram

\[
\begin{array}{ccc}
A & \rightarrow & A_0 \\
\downarrow & & \downarrow \\
A_n & \rightarrow & A_0 \times \Sigma^{n+2}H\pi_{n+1}A \\
\end{array}
\]

Construct A_{n+1} as homotopy pullback. Get $A \rightarrow A_{n+1} \rightarrow A_n$.
How do you construct the Postnikov tower? (cont.)

\[D^{n+2}(A_n, A; H\pi_{n+1}A) = \text{Hom}(\pi_{n+1}A, \pi_{n+1}A). \]

Choosing identity element, we get a (homotopy class of) diagram

\[A \rightarrow \rightarrow \downarrow \downarrow \rightarrow A_0 \]

\[A_n \rightarrow A_0 \times \Sigma^{n+2}H\pi_{n+1}A \]

Construct \(A_{n+1} \) as homotopy pullback.

Get \(A \rightarrow A_{n+1} \rightarrow A_n. \)
How do you construct the Postnikov tower? (cont.)

\[D^{n+2}(A_n, A; H\pi_{n+1}A) = \text{Hom}(\pi_{n+1}A, \pi_{n+1}A). \]

Choosing identity element, we get a (homotopy class of) diagram

\[
\begin{array}{c}
A \\
\downarrow \\
A_{n+1} \\
\downarrow \\
A_n \\
\longrightarrow A_0 \times \Sigma^{n+2}H\pi_{n+1}A
\end{array}
\]

Construct \(A_{n+1} \) as homotopy pullback.
Get \(A \rightarrow A_{n+1} \rightarrow A_n \).
A map of O-algebras $f : B \to A_n$ lifts (in the homotopy category) to a map of O-algebras $B \to A_{n+1}$ if and only if $f^* k^{n+1}_O = 0$ in $D^{n+2}(B; \pi_{n+1}A)$. When a lift exists, the set of lifts has a free transitive action of $D^{n+1}(B; \pi_{n+1}A)$.
Obfuscation Theory

A map of O-algebras $f : B \to A_n$ lifts (in the homotopy category) to a map of O-algebras $B \to A_{n+1}$ if and only if $f^* k_{n+1} = 0$ in $D^{n+2}(B; \pi_{n+1} A)$. When a lift exists, the set of lifts has a free transitive action of $D^{n+1}(B; \pi_{n+1} A)$.

Theorem

An O-algebra structure on A_n lifts to an O-algebra structure on A_{n+1} if and only if the spectrum-level k-invariant $k^{n+1} \in H^{n+2}(A_n, \pi_{n+1} A)$ lifts to an element of $D^{n+2}(A_n, \pi_{n+1} A)$.
Application: \(BP \)

Theorem (Basterra-Mandell)

\(BP \) has an \(E_4 \) ring spectrum structure. It is unique up to automorphism in the homotopy category of \(E_4 \) ring spectra.

Existence:
- Compute topological Quillen (co)homology in a range for Postnikov section \(BP_n \).
- Play off of \(MU \)

Uniqueness:
- Compute topological Quillen (co)homology.
- Obstructions for constructing an \(E_4 \) map \(BP \to BP' \) are zero.
- Any map of spectra \(BP \to BP \) is either zero on an equivalence.
Theorem (Basterra-Mandell)

BP has an E_4 ring spectrum structure. It is unique up to automorphism in the homotopy category of E_4 ring spectra.

Existence:
- Compute topological Quillen (co)homology in a range for Postnikov section BP_n.
- Play off of MU

Uniqueness:
- Compute topological Quillen (co)homology.
- Obstructions for constructing an E_4 map $BP \to BP'$ are zero.
- Any map of spectra $BP \to BP$ is either zero on an equivalence.
Theorem (Basterra-Mandell)

BP has an E_4 ring spectrum structure. It is unique up to automorphism in the homotopy category of E_4 ring spectra.

Existence:
- Compute topological Quillen (co)homology in a range for Postnikov section BP_n.
- Play off of MU.

Uniqueness:
- Compute topological Quillen (co)homology.
- Obstructions for constructing an E_4 map $BP \to BP'$ are zero.
- Any map of spectra $BP \to BP$ is either zero on an equivalence.
Theorem (Basterra-Mandell)

\[\text{BP has an } E_4 \text{ ring spectrum structure. It is unique up to automorphism in the homotopy category of } E_4 \text{ ring spectra.} \]

Existence:

- Compute topological Quillen (co)homology in a range for Postnikov section \(BP_n \).
- Play off of \(MU \)

Uniqueness:

- Compute topological Quillen (co)homology.
 - Obstructions for constructing an \(E_4 \) map \(BP \to BP' \) are zero.
 - Any map of spectra \(BP \to BP \) is either zero on an equivalence.
Application: \textit{BP}

\textbf{Theorem (Basterra-Mandell)}

\textit{BP has an E_4 ring spectrum structure. It is unique up to automorphism in the homotopy category of E_4 ring spectra.}

Existence:
- Compute topological Quillen (co)homology in a range for Postnikov section BP_n.
- Play off of MU

Uniqueness:
- Compute topological Quillen (co)homology.
- Obstructions for constructing an E_4 map $BP \to BP'$ are zero.
- Any map of spectra $BP \to BP$ is either zero on an equivalence.
Application: \(BP\)

Theorem (Basterra-Mandell)

\(BP\) has an \(E_4\) ring spectrum structure. It is unique up to automorphism in the homotopy category of \(E_4\) ring spectra.

Existence:

- Compute topological Quillen (co)homology in a range for Postnikov section \(BP_n\).
- Play off of \(MU\)

Uniqueness:

- Compute topological Quillen (co)homology.
- Obstructions for constructing an \(E_4\) map \(BP \to BP'\) are zero.
- Any map of spectra \(BP \to BP\) is either zero on an equivalence.
Computing topological Quillen homology of BP

Need some facts:

- $H_* BP = \mathbb{Z}_p[\xi_1, \xi_2, \ldots]$
- For augmented/non-unital $E_n H\mathbb{Z}_p$-algebras, topological Quillen homology can be computed as an iterated bar construction.

$$D^*(BP; H\mathbb{Z}_p) \cong \pi_{*+4}B^4(H\mathbb{Z}_p \wedge BP)$$

We compute that this is free and concentrated in even degrees.

It follows that $D^*(BP; H\mathbb{Z}_p)$ is concentrated in even degrees.

Obstruction for lifting a map $BP \to BP'_n$ to BP'_{n+1} is an element of $D^{n+2}(BP; H\pi_{n+1}BP)$.
Computing topological Quillen homology of BP

Need some facts:

- $H_\ast BP = \mathbb{Z}_\langle p \rangle[\xi_1, \xi_2, \ldots]$
- For augmented/non-unital $E_n H\mathbb{Z}_\langle p \rangle$-algebras, topological Quillen homology can be computed as an iterated bar construction.

$$D_\ast(BP; H\mathbb{Z}_\langle p \rangle) \cong \pi_\ast+4\tilde{B}^4(H\mathbb{Z}_\langle p \rangle \wedge BP)$$

We compute that this is free and concentrated in even degrees.

It follows that $D_\ast(BP; H\mathbb{Z}_\langle p \rangle)$ is concentrated in even degrees.

Obstruction for lifting a map $BP \to BP'_n$ to BP'_{n+1} is an element of $D^{n+2}(BP; H\pi_{n+1}BP)$.

M.A.Mandell (IU)
Obstruction Theory
Mar 16 20 / 24
Computing topological Quillen homology of BP

Need some facts:

1. $H_* BP = \mathbb{Z}_p[\xi_1, \xi_2, \ldots]$
2. For augmented/non-unital $E_n H\mathbb{Z}_p$-algebras, topological Quillen homology can be computed as an iterated bar construction.

$$D_*(BP; H\mathbb{Z}_p) \cong \pi_{*+4} \tilde{B}^4 (H\mathbb{Z}_p \land BP)$$

We compute that this is free and concentrated in even degrees.

It follows that $D_*(BP; H\mathbb{Z}_p)$ is concentrated in even degrees.

Obstruction for lifting a map $BP \to BP'_n$ to BP'_{n+1} is an element of $D^{n+2}(BP; H\pi_{n+1} BP)$.
Computing topological Quillen homology of BP

Need some facts:

- $H_\ast BP = \mathbb{Z}_\langle p \rangle[\xi_1, \xi_2, \ldots]$

- For augmented/non-unital $E_n H\mathbb{Z}_\langle p \rangle$-algebras, topological Quillen homology can be computed as an iterated bar construction.

\[
D_\ast(BP; H\mathbb{Z}_\langle p \rangle) \cong \pi_{\ast+4} \tilde{B}^4(H\mathbb{Z}_\langle p \rangle \wedge BP)
\]

We compute that this is free and concentrated in even degrees.

It follows that $D_\ast(BP; H\mathbb{Z}_\langle p \rangle)$ is concentrated in even degrees.

Obstruction for lifting a map $BP \to BP'_n$ to BP'_{n+1} is an element of $D^{n+2}(BP; H\pi_{n+1}BP)$.
Computing topological Quillen homology of BP

Need some facts:

- $H_\ast BP = \mathbb{Z}_\mathbf{(p)}[[\xi_1, \xi_2, \ldots]]$
- For augmented/non-unital $E_n H\mathbb{Z}_{(p)}$-algebras, topological Quillen homology can be computed as an iterated bar construction.

$$D_\ast(BP; H\mathbb{Z}_{(p)}) \cong \pi_{\ast+4} \tilde{B}^4 (H\mathbb{Z}_{(p)} \wedge BP)$$

We compute that this is free and concentrated in even degrees.

It follows that $D_\ast(BP; H\mathbb{Z}_{(p)})$ is concentrated in even degrees.

Obstruction for lifting a map $BP \to BP'_n$ to BP'_{n+1} is an element of $D^{n+2}(BP; H\pi_{n+1}BP)$.
Computing topological Quillen homology of BP

Need some facts:

- $H_* BP = \mathbb{Z}_{(p)}[\xi_1, \xi_2, \ldots]$
- For augmented/non-unital $E_n H\mathbb{Z}_{(p)}$-algebras, topological Quillen homology can be computed as an iterated bar construction.

$$D_*(BP; H\mathbb{Z}(p)) \cong \pi_{*+4} \tilde{B}^4 (H\mathbb{Z}(p) \wedge BP)$$

We compute that this is free and concentrated in even degrees.

It follows that $D_*(BP; H\mathbb{Z}(p))$ is concentrated in even degrees.

Obstruction for lifting a map $BP \to BP'_n$ to BP'_{n+1} is an element of $D^{n+2}(BP; H\pi_{n+1} BP)$.
Computing topological Quillen homology of BP

Need some facts:

- $H_*BP = \mathbb{Z}(p)[\xi_1, \xi_2, \ldots]$
- For augmented/non-unital $E_n H\mathbb{Z}(p)$-algebras, topological Quillen homology can be computed as an iterated bar construction.

$$D_*(BP; H\mathbb{Z}(p)) \cong \pi_* + 4 \tilde{B}^4(H\mathbb{Z}(p) \wedge BP)$$

We compute that this is free and concentrated in even degrees.

It follows that $D_*(BP; H\mathbb{Z}(p))$ is concentrated in even degrees.

Obstruction for lifting a map $BP \rightarrow BP'_n$ to BP'_{n+1} is an element of $D^{n+2}(BP; H\pi_{n+1}BP)$.
The Computation

Want to show $\pi_* B^4(H\mathbb{Z}_p \wedge BP)$ is free and concentrated in even degrees.

Suffices to compute homotopy groups of

$$B^4(H\mathbb{Z}_p \wedge BP) \wedge_{H\mathbb{Z}_p} H\mathbb{Z}/p \cong B^4(H\mathbb{Z}/p \wedge BP)$$

Start with

$$\pi_*(H\mathbb{Z}/p \wedge BP) = H_*(BP; \mathbb{Z}/p) = \mathbb{Z}/p[\xi_1, \xi_2, \ldots], \quad |\xi_i| = 2p^i - 2.$$

Spectral sequence to compute π_* of $B(H\mathbb{Z}/p \wedge BP)$ collapses at E_2 and you get $\pi_* B(\mathbb{Z}/p \wedge BP)$ is exterior on odd degree classes $\sigma \xi_i$ in degree $2p^i - 1$.
Want to show $\pi_* B^4(\mathbb{H}\mathbb{Z}(p) \wedge BP)$ is free and concentrated in even degrees.

Suffices to compute homotopy groups of

$$B^4(\mathbb{H}\mathbb{Z}_p \wedge BP) \wedge H\mathbb{Z}/p \cong B^4(\mathbb{H}\mathbb{Z}/p \wedge BP)$$

Start with

$$\pi_*(\mathbb{H}\mathbb{Z}/p \wedge BP) = H_*(BP; \mathbb{Z}/p) = \mathbb{Z}/p[\xi_1, \xi_2, \ldots], \quad |\xi_i| = 2p^i - 2.$$

Spectral sequence to compute π_* of $B(\mathbb{H}\mathbb{Z}/p \wedge BP)$ collapses at E_2 and you get $\pi_* B(\mathbb{Z}/p \wedge BP)$ is exterior on odd degree classes $\sigma \xi_i$ in degree $2p^i - 1$.

M.A.Mandell (IU) Obstruction Theory Mar 16 21 / 24
The Computation

Want to show $\pi_* B^4(\mathbb{H}\mathbb{Z}(p) \wedge BP)$ is free and concentrated in even degrees.

Suffices to compute homotopy groups of

$$B^4(\mathbb{H}\mathbb{Z}_p \wedge BP) \wedge_{\mathbb{H}\mathbb{Z}_p} H\mathbb{Z}/p \cong B^4(\mathbb{H}\mathbb{Z}/p \wedge BP)$$

Start with

$$\pi_* (\mathbb{H}\mathbb{Z}/p \wedge BP) = H_*(BP; \mathbb{Z}/p) = \mathbb{Z}/p[\xi_1, \xi_2, \ldots], \quad |\xi_i| = 2p^i - 2.$$

Spectral sequence to compute π_* of $B(\mathbb{H}\mathbb{Z}/p \wedge BP)$ collapses at E_2 and you get $\pi_* B(\mathbb{Z}/p \wedge BP)$ is exterior on odd degree classes $\sigma \xi_i$ in degree $2p^i - 1$.

M.A. Mandell (IU)
The Computation

Want to show $\pi_* B^4(H\mathbb{Z}_p \wedge BP)$ is free and concentrated in even degrees.

Suffices to compute homotopy groups of

$$B^4(H\mathbb{Z}_p \wedge BP) \wedge H\mathbb{Z}/p \approx B^4(H\mathbb{Z}/p \wedge BP)$$

Start with

$$\pi_*(H\mathbb{Z}/p \wedge BP) = H_*(BP; \mathbb{Z}/p) = \mathbb{Z}/p[\xi_1, \xi_2, \ldots], \quad |\xi_i| = 2p^i - 2.$$

Spectral sequence to compute π_* of $B(H\mathbb{Z}/p \wedge BP)$ collapses at E_2 and you get $\pi_* B(\mathbb{Z}/p \wedge BP)$ is exterior on odd degree classes $\sigma \xi_i$ in degree $2p^i - 1$.

M.A. Mandell (IU) Obstruction Theory Mar 16 21/24
Spectral sequence to compute π_\ast of $B^2(H\mathbb{Z}/p \wedge BP)$ collapses at E_2 and you get E_∞-term is truncated polynomial on classes $\gamma_j\sigma^2\xi_i$ in degree $2p^i+j$, for $i = 1, 2, \ldots$, and $j = 0, 1, \ldots$

Need to figure out multiplicative extensions in order to get the full computation for $\pi_\ast B^2(\mathbb{Z}/p \wedge BP)$

Map $BP \to H\mathbb{Z}/p$ is an E_4 map, so can read of the Dyer-Lashof operations (that exist on the homology of E_4 ring spectra) on $H_\ast BP$ from the Dyer-Lashof operations for H_\ast. The Dyer-Lashof operation

$$Q^{p^i} \xi_i = \xi_{i+1} + \text{decomposables}$$

implies that

$$Q^{p^i+j} \gamma_j\sigma^2\xi_i = \gamma_j\sigma^2\xi_{i+1}.$$

But this is now the p-th power operation.
Spectral sequence to compute π_\ast of $B^2(H\mathbb{Z}/p \wedge BP)$ collapses at E_2 and you get E_∞-term is truncated polynomial on classes $\gamma_j \sigma^2 \xi_i$ in degree $2p^i + j$, for $i = 1, 2, \ldots$, and $j = 0, 1, \ldots$

Need to figure out multiplicative extensions in order to get the full computation for $\pi_\ast B^2(\mathbb{Z}/p \wedge BP)$

Map $BP \to H\mathbb{Z}/p$ is an E_4 map, so can read of the Dyer-Lashof operations (that exist on the homology of E_4 ring spectra) on $H_* BP$ from the Dyer-Lashof operations for H_*. The Dyer-Lashof operation

$$Q^{p^i} \xi_i = \xi_{i+1} + \text{decomposables}$$

implies that

$$Q^{p^{i+j}} \gamma_j \sigma^2 \xi_i = \gamma_j \sigma^2 \xi_{i+1}.$$

But this is now the p-th power operation.
Spectral sequence to compute π_\ast of $B^2(H\mathbb{Z}/p \wedge BP)$ collapses at E_2 and you get E_∞-term is truncated polynomial on classes $\gamma_j\sigma^2\xi_i$ in degree $2p^i+j$, for $i = 1, 2, \ldots$, and $j = 0, 1, \ldots$

Need to figure out multiplicative extensions in order to get the full computation for $\pi_\ast B^2(\mathbb{Z}/p \wedge BP)$.

Map $BP \to H\mathbb{Z}/p$ is an E_4 map, so can read of the Dyer-Lashof operations (that exist on the homology of E_4 ring spectra) on $H_\ast BP$ from the Dyer-Lashof operations for H_\ast. The Dyer-Lashof operation

$$Q^{p^i} \xi_i = \xi_{i+1} + \text{decomposables}$$

implies that

$$Q^{p^i+j} \gamma_j\sigma^2\xi_i = \gamma_j\sigma^2\xi_{i+1}.$$

But this is now the p-th power operation.
Spectral sequence to compute π_\ast of $B^2(H\mathbb{Z}/p \wedge BP)$ collapses at E_2 and you get E_∞-term is truncated polynomial on classes $\gamma_j\sigma^2\xi_i$ in degree $2p^{i+j}$, for $i = 1, 2, \ldots$, and $j = 0, 1, \ldots$

Need to figure out multiplicative extensions in order to get the full computation for $\pi_\ast B^2(\mathbb{Z}/p \wedge BP)$

Map $BP \to H\mathbb{Z}/p$ is an E_4 map, so can read of the Dyer-Lashof operations (that exist on the homology of E_4 ring spectra) on H_*BP from the Dyer-Lashof operations for H_*. The Dyer-Lashof operation

$$Q^{p^i} \xi_i = \xi_{i+1} + \text{decomposables}$$

implies that

$$(\gamma_j\sigma^2\xi_i)^p = Q^{p^{i+j}} \gamma_j\sigma^2\xi_i = \gamma_j\sigma^2\xi_{i+1}.$$

But this is now the p-th power operation.
Associated graded was truncated poly on $\gamma_j \sigma^2 \xi_i$; now know $(\gamma_j \sigma^2 \xi_i)^p = \gamma_j \sigma^2 x_{i+1}$. So we get

$$\pi_* B^2(H\mathbb{Z}/p \wedge BP) = \mathbb{Z}/p[\gamma_0 \sigma^2 x_1, \gamma_1 \sigma^2 x_1, \gamma_2 \sigma^2 x_1, \ldots]$$

polynomial on classes in degrees $2p^{j+1}$ for $j = 0, 1, \ldots$

Looking at the spectral sequence, we get $\pi_* B^3(H\mathbb{Z}/p \wedge BP)$ is exterior on odd degree classes in degrees $2p^{j+1} + 1$.

Looking at the spectral sequence, we get $\pi_* B^4(H\mathbb{Z}/p \wedge BP)$ is concentrated in even degrees.
AssOCIATED GRADED WAS TRUNCATED POLY ON $\gamma_j \sigma^2 \xi_i$; NOW KNOW $(\gamma_j \sigma^2 \xi_i)^p = \gamma_j \sigma^2 x_{i+1}$. SO WE GET

$$\pi_* B^2(\mathbb{H}\mathbb{Z}/p \wedge BP) = \mathbb{Z}/p[\gamma_0 \sigma^2 x_1, \gamma_1 \sigma^2 x_1, \gamma_2 \sigma^2 x_1, \ldots]$$

POLYNOMIAL ON CLASSES IN DEGREES $2p^{j+1}$ FOR $j = 0, 1, \ldots$

LOOKING AT THE SPECTRAL SEQUENCE, WE GET $\pi_* B^3(\mathbb{H}\mathbb{Z}/p \wedge BP)$ IS EXTERIOR ON ODD DEGREE CLASSES IN DEGREES $2p^{j+1} + 1$.

Looking at the spectral sequence, we get $\pi_* B^4(\mathbb{H}\mathbb{Z}/p \wedge BP)$ is concentrated in even degrees.
Associated graded was truncated poly on $\gamma_j\sigma^2\xi_i$; now know $(\gamma_j\sigma^2\xi_i)^p = \gamma_j\sigma^2x_{i+1}$. So we get

$$\pi_* B^2(H\mathbb{Z}/p \land BP) = \mathbb{Z}/p[\gamma_0\sigma^2x_1, \gamma_1\sigma^2x_1, \gamma_2\sigma^2x_1, \ldots]$$

polynomial on classes in degrees $2p^{j+1}$ for $j = 0, 1, \ldots$

Looking at the spectral sequence, we get $\pi_* B^3(H\mathbb{Z}/p \land BP)$ is exterior on odd degree classes in degrees $2p^{j+1} + 1$.

Looking at the spectral sequence, we get $\pi_* B^4(H\mathbb{Z}/p \land BP)$ is concentrated in even degrees.