Hagar (Indiana Univ. Bloomington) presents the problem of continuous or discrete space by tracing its mixed philosophical and physical history. He first summarizes the long, unresolved history of the discussion from a variety of positions and disciplines. He then gets to the very interesting part of his account. Focusing on trying to answer whether the fundamental question is empirical or not, the book presents a history of the development of quantum gravity. The author's discourse is not centered in philosophy or physics, but rather in the attempts to resolve quantum mechanics and general relativity. Key to this presentation is Hagar's careful presentation of the consequences of accepting a discrete or continuous structure. For example, he nicely shows how the finitists' approach leads to problems of distinguishing quantum from classical probabilities. Included in this presentation is an exploration of how Einstein suggested that the quantum gravity problem might be solved. Throughout the work, Hagar does a good job of showing how complicated this issue is without burying the reader in technical points. That said, this is not a text for the uninitiated. Readers need a solid foundation in physics along with an introduction to the philosophical issues.

Summing Up: Recommended. Upper-division undergraduates, graduate students, and researchers/faculty.

--E. Kincanon, Gonzaga University

Copyright 2015 American Library Association