Asset-holdings caps and bubbles in experimental asset markets

Volodymyr Lugovskyya, Daniela Puzzelloa,* Steven Tuckerb, Arlington Williamsa

a Department of Economics, Indiana University, Bloomington, IN 47405–7104, USA
b Department of Economics, University of Waikato, Private Bag 3105, Hamilton, NZ, USA

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Accepted 12 April 2014
Available online xxx

\textbf{JEL classification:}
C90
D03
G02
G12
G18

\textbf{Keywords:}
Experimental asset markets
Bubbles
Asset-holdings caps

\textbf{A B S T R A C T}

We report the results of an experiment designed to study the effect of individual asset-holdings restrictions on the formation of bubbles and crashes in laboratory asset markets. Bubbles and crashes are a quite robust phenomenon in experimental settings. Motivated by demand-control policies employed in the Chinese real-estate market, we explore the effects of permanent and short-term caps on individual asset holdings. We find that permanent caps greatly reduce positive bubbles, but tend to generate negative bubbles in later periods. Under short-term caps, on the other hand, neither positive nor negative bubbles are observed. Our results indicate that asset-holdings caps can be effective in eliminating bubbles if properly designed.

© 2014 Elsevier B.V. All rights reserved.

\section{Introduction}

A bubble is defined as “trade in high volumes at prices that are considerably at variance with intrinsic values” (see King et al., 1993). Commodity and financial asset market bubbles have a long history: the Dutch tulip mania (1634–1637), the South Sea Company Bubble (1720), the Roaring Twenties stock-market bubble (1922–1929), the Dot-com bubble (1995–2000) and more recently, real-estate bubbles in the US as well as Europe and China.

Bubbles generate price distortions that are potentially associated with allocative inefficiencies and have often led to financial crises. Thus, economists are naturally drawn toward studying bubbles via theoretical models and empirical methods. Laboratory experiments provide a useful tool to study bubbles empirically since they allow economists to control a variety of factors that are difficult or impossible to control in field environments (e.g., market microstructure and the fundamental values of the assets).

* Corresponding author. Tel.: +1 8128565419.
E-mail addresses: vlugovsk@indiana.edu (V. Lugovskyy), dpuzzell@indiana.edu (D. Puzzello), steven.tucker.nz@gmail.com (S. Tucker), williams@indiana.edu (A. Williams).

http://dx.doi.org/10.1016/j.jebo.2014.04.021
0167-2681/© 2014 Elsevier B.V. All rights reserved.

Please cite this article in press as: Lugovskyy, V., et al., Asset-holdings caps and bubbles in experimental asset markets. J. Econ. Behav. Organ. (2014), http://dx.doi.org/10.1016/j.jebo.2014.04.021
Smith et al. (1988) were the first to observe price bubbles in long-lived finite-horizon experimental asset markets. Many subsequent studies have found that bubbles and crashes are a robust phenomenon in experimental settings. To the best of our knowledge, the only treatment variables that appear to dampen significantly price bubbles are experience of all or some of the traders in the same market environment (Smith et al., 1988; Van Boening et al., 1993; Dufwenberg et al., 2005; Haruvy et al., 2007), the timing of dividend payments (each period versus a lump-sum payment at the end of the trading horizon, e.g., Smith et al., 2000), constant fundamental value or decreasing cash-to-asset ratio (Kirchler et al., 2012), and the payment of interest on cash with increasing fundamental value (Giusti et al., 2012).

In this paper we use experimental methods to study the impact of individual asset-holdings restrictions on asset-market price dynamics, and whether these restrictions can eliminate or dampen the magnitude of bubbles. Policies of this type are currently being employed in China in response to the real-estate bubble. For instance, a new policy was introduced in Beijing in 2010 dictating that a native Beijing family could own at most two houses, and non-native Beijing families were allowed to own only one house. Recent news dispatches by Bloomberg indicates that these policies are successful in cooling off the real-estate market. It is important to note that these policies were implemented in conjunction with other policies such as increases in downpayments. In laboratory economies, on the other hand, asset-holdings control policies can be explored in isolation.

Previous experimental evidence indicates that bubbles typically emerge because a limited number of traders take large positions in the asset in initial periods (e.g., Caginalp et al., 2000; Caginalp and Ilieva, 2008). Our first empirical finding confirms that, in environments à la Smith et al. (1988), asset-holdings concentration in initial periods (which measures the demand of the most aggressive traders) is significantly and positively correlated with the magnitude of bubbles. This suggests that policies limiting individual asset-holdings can indeed dampen bubble formation. Motivated by this finding, previous experimental evidence, and some of the policies adopted in China in response to the real estate bubble, we implemented policies that place caps on individual asset holdings in the lab. Asset-holdings caps in the experiment capture an important aspect of the restrictions imposed in China by limiting aggregate demand, especially the component of aggregate demand associated with the most aggressive buyers and speculators.

Our treatment variables are associated with the duration of the cap: permanent versus short-term cap. The permanent cap was in place for the entire time horizon of the market, while the short-term cap was imposed only in the first half.

Our main findings are that permanent caps reduce positive bubbles by imposing a constraint on the most aggressive (net) buyers, but these caps introduce negative bubbles in the latter half of the trading horizon by limiting demand at prices below the fundamental value. However, with short-term caps, neither positive nor negative bubbles are observed. Intuitively, caps limit the ability of (fundamental and momentum) traders to take large positions and thus reduce positive bubbles. Also, demand is no longer constrained in the second half of the trading horizon, preventing prices to fall sharply below the fundamental value.

Our study complements the literature by showing that asset-holdings caps limit the impact of traders who tend to accumulate large positions by constraining their demand. It is related to studies that impose price change limits (as in King et al., 1993) and relax short-selling constraints (King et al., 1993; Ackert et al., 2001; Haruvy and Noussair, 2006). We impose restrictions on quantities demanded while the price limit imposes restrictions directly on the price and short-sales affect supply. While the experience, the fundamental value process and liquidity levels of traders are generally beyond the control of the regulators, price or quantity controls may be simpler to implement.

Our results indicate that the implication for field environments, where additional challenges are necessarily present (e.g., it is more difficult to determine fundamental values, the relevant time horizons are unknown and presumably very long), is that caps should be appropriately introduced and lifted endogenously in response to sudden increases and decreases...

1 Hussam et al. (2008) show that if the environment is subject to changes in liquidity and uncertainty, then even experience is not sufficient to eliminate bubbles. Noussair and Tucker (2006) eliminate the spot market bubble via a stylized experimental design of a futures market for every spot market period. Crockett and Duffy (2013) show that intertemporal consumption smoothing inhibits the formation of bubbles. Lei and Vesely (2009) show that it is possible to mitigate bubbles without subjects actually participating in market trading activity. In their study, subjects simply observe and receive earnings from a series of random dividend draws prior to participating in a trading market of equal length.

2 Similar policies were also applied in Shanghai and other Chinese major cities. These policies are adopted to control aggregate demand and especially the component associated with speculation.

4 Fundamental trading is based on fundamental values, while momentum trading is based on price trends, see Caginalp and Ilieva (2008), Caginalp et al. (1998) or Caginalp et al. (2000).

5 King et al. (1993) show that price limits do not tame bubbles. The evidence on the effects of relaxing short-selling constraints is mixed. King et al. (1993) find that relaxing short-selling constraints do not reduce the magnitude of bubbles. Ackert et al. (2001) find that prices are closer to fundamental value when short-selling constraints are relaxed. Haruvy and Noussair (2006) find that relaxing short-selling constraints lowers prices but does not induce prices to track the fundamental value. For a discussion of the methodological differences across these studies that may have attributed to different results see Haruvy and Noussair (2006).

6 Our findings are consistent with the work of Caginalp et al. (2000) and Caginalp and Ilieva (2008) who show that bubbles are initiated by fundamental traders and fueled by the cash of momentum traders. In our study, asset holdings caps either become binding for fundamental traders preventing strong positive trends from emerging or become binding for momentum traders before the cash constraint does.

Please cite this article in press as: Lugovskyy, V., et al., Asset-holdings caps and bubbles in experimental asset markets. J. Econ. Behav. Organ. (2014). http://dx.doi.org/10.1016/j.jebo.2014.04.021
in prices. Indeed, there is evidence that at the beginning of 2012 purchase restrictions were eased in Shanghai and then tightened again in the second half of 2012.7

2. Hypotheses

In this section we formulate four hypotheses, based on previous experimental evidence, that guide our experimental design and data analysis.

Previous experimental evidence indicates that bubbles typically emerge because a limited number of traders take large positions in the asset in initial periods (e.g., Caginalp et al., 2000; Caginalp and Ilieva, 2008). Specifically, an initial undervaluation of asset shares motivates traders to buy based on fundamental considerations. This generates a positive price trend that triggers momentum trading and fuels bubbles.8

Thus we conjecture that asset-holdings concentration in initial periods is an important factor contributing to bubble formation. The concentration of asset holdings among a small number of traders in initial periods may have important effects on price dynamics and bubble formation as it indicates the strength of demand for asset units. Concentration in initial periods may generate an upward price trend and, in turn, momentum trading (i.e., trade based on price trends) among a subset of traders.

Hypothesis 1. The asset-holdings concentration ratio in initial periods is positively correlated with the magnitude of bubbles.

Some economists argue that China is experiencing bubbles in the real-estate markets of large cities. In order to restrict the demand for housing, the Chinese government has implemented a variety of policies, including a cap on the number of owned houses. Motivated by the latter policy and by previous experimental evidence mentioned above, we conjecture that by limiting the ability of (fundamental and momentum) traders to take large positions, positive bubbles may be effectively reduced.

Hypothesis 2. The permanent asset-holdings cap reduces the magnitude of positive bubbles.

Caginalp and Ilieva (2008) show that, as momentum traders become cash-constrained and as prices continue exceeding the fundamental value, the demand for the asset by both momentum and fundamental traders weakens and prices start decreasing. As prices start decreasing, momentum traders sell contributing to a further decrease in prices. Note that as prices decrease the purchasing power of fundamental traders increases. Thus, it is difficult to observe negative bubbles in unconstrained environments, since if prices were to fall below the fundamental value, fundamental traders would demand asset shares and support prices that are not below the fundamental value.

On the other hand, in contrast with unconstrained environments, permanent caps constrain fundamental traders also in later periods.9 As a result, negative bubbles may appear in later periods.

Hypothesis 3. The permanent asset-holdings cap may generate negative bubbles in later periods.

Negative bubbles imply price distortions and thus are not desirable. We conjecture that in order to reduce negative bubbles, the cap should be lifted in later periods. That is, the cap should not be permanent but short-term. A short-term cap may not have the same negative bubble-creation tendencies as conjectured for a permanent-cap mechanism since demand by fundamental-value traders and other traders is not constrained if the price falls below the fundamental value in the latter periods (see supplementary online material).

Hypothesis 4. The short-term asset-holdings cap reduces the magnitude of positive bubbles and does not generate negative bubbles.

3. Experimental design

3.1. Market structure

Our experimental design builds on the seminal study of Smith et al. (1988).10 We created a laboratory market in which agents have the opportunity to trade an asset with a stochastic dividend process. The market had a finite time horizon of 15 periods. At the end of each period, each unit of the asset in a trader’s inventory paid an uncertain dividend of 0, 8, 28, or 60 francs (the experimental currency) with equal probability (e.g., Smith et al., 1988; King et al., 1993; Caginalp et al., 2000; Lugovskyy et al., 2014).

8 Momentum traders are defined by Caginalp and Ilieva (2008) as those who “buy stocks with the expectation of a continued rise in prices and sell stocks with the expectation of a continued fall in prices.”

9 See Supplementary online material for evidence of an increasing number of constrained traders in later periods.

10 Given our focus on policies designed to eliminate bubbles, this framework was a natural choice since bubbles have been shown to be robust in this environment.

Please cite this article in press as: Lugovskyy, V., et al., Asset-holdings caps and bubbles in experimental asset markets. J. Econ. Behav. Organ. (2014), http://dx.doi.org/10.1016/j.jebo.2014.04.021
Lei et al., 2001; Haruvy and Noussair, 2006; Hussam et al., 2008). Therefore, the expected value of the dividend payment in each period was 24 francs. It was publicly known that the dividend was independently drawn each period and the actual dividend paid in each period was the same for all traders. Since there was no terminal buy-out for asset holdings upon completion of the market, asset units were worthless at the end of period 15. Given common knowledge of the dividend process, the fundamental value of the asset can be calculated at any time within the experiment. More specifically, assuming risk neutrality, the fundamental value is calculated as the expected value of the dividend in each period (24 francs) times the number of periods remaining (including the current period). The fundamental value of the asset is, therefore, declining from 360 francs in period 1 to 24 francs in period 15.

At the beginning of the experiment, each trader was endowed with ten units of the asset and a cash balance of 10,000 francs. Traders had the opportunity to buy and sell asset units in each period via a continuous double auction with an open order book. Each trading period lasted either 120 or 180 seconds. Subjects could not purchase more units than they could afford nor sell more units than they had in their inventories, i.e., negative cash balances and short selling was not allowed. Inventories of asset units and cash balances were carried over from period to period. No interest was paid on cash holdings and there were no trading fees.

3.2. Experimental treatments

This study consists of three treatments that differ by the number of asset units that a trader is allowed to own. Table 1 summarizes the treatment characteristics reported in this study.

The baseline (Unconstrained) treatment has no asset ownership constraints imposed. More specifically, a trader’s purchases are only constrained by their cash holdings, i.e., depending upon trading prices it is conceivable for a single trader to own the total market stock of the asset. The Permanent Asset-Holdings Cap (Permanent Cap) treatment restricts the asset ownership of each trader to 18 units across the entire time horizon, which is 1.8 times the individual trader initial endowment. The Short-term Asset Holdings Cap (Short-term Cap) treatment is identical to the Permanent Cap treatment except that the constraint is removed at the start of period 9. It was explicitly stated in the instructions that the cap would be removed after period 8, so subjects knew it in advance.

At the beginning of each period across all treatments, traders made forecasts of the average transaction price for that period. They were paid for the accuracy of their forecasts as indicated in Table 2. All earnings from forecasting accumulated in a separate account from the traders’ cash on hand, and thus these payments did not affect the market capital-asset ratio.

The US sessions had a conversion rate of 600 francs to 1 US dollar. The New Zealand sessions had a conversion rate of 800 francs to 1 NZ dollar and included a version of the Holt and Laury (2002) risk-elicitation mechanism. The parameters in both locations were set to generate average hourly earnings of $18.

Table 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Year and location of data collection</th>
<th>Number of</th>
<th>Individual asset – holdings cap (of 18 shares)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sessions</td>
<td>Subjects</td>
</tr>
<tr>
<td>Unconstrained</td>
<td>2011–2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U of Canterbury &</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana U</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent cap</td>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana U</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-term cap</td>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana U</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Forecast accuracy</th>
<th>Forecast earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within 10% of actual price</td>
<td>50 francs</td>
</tr>
<tr>
<td>Within 25% of actual price</td>
<td>20 francs</td>
</tr>
<tr>
<td>Within 50% of actual price</td>
<td>10 francs</td>
</tr>
</tbody>
</table>

Please cite this article in press as: Lugovsky, V., et al., Asset-holdings caps and bubbles in experimental asset markets. J. Econ. Behav. Organ. (2014), http://dx.doi.org/10.1016/j.jebo.2014.04.021
3.3. Experimental procedures

The experiment consisted of 22 markets, 5 of which were conducted at the University of Canterbury in Christchurch, New Zealand and the remaining ones at Indiana University in Bloomington, Indiana, USA. The number of participants in each market varied from seven to twelve subjects. The subjects were recruited from undergraduate courses across both universities via their respective recruitment/subject management program. Many of the subjects had taken part in previous experiments in economics and other disciplines, but no subjects had participated in markets of comparable designs and each subject participated in only one market of this study. The markets were computerized using the z-Tree software package. At the end of a session, the subjects’ final holdings of francs were converted to NZ (US) dollars at the predetermined and publicly known conversion rate. Each session lasted approximately 90 min including instructional period and payment of subjects. Subjects earned on average $26.

At the beginning of each session, subjects were provided the instructions of the first task of the experiment. The instructions for all tasks were projected on an overhead. The first stage in all sessions consisted of a cognitive reflection test (Frederick, 2005) to measure the cognitive ability of all subjects. This stage was hand-run with the subjects providing their answers to the three questions on a decision sheet. Subjects were given as much time as they needed to complete the three questions. Subjects received two dollars for each correct answer at the end of the session. Once everyone finished, the decisions sheets were collected and the instructions for the second stage were handed out. For some sessions, the second stage was a version of the Holt and Laury (2002) risk-elicitation mechanism, which was also hand-run. Once again, subjects were given as much time as required to complete the series of lotteries. No earnings information was provided for either the cognitive reflection test or risk-elicitation mechanism until the end of the session. Once everyone had finished, the decision sheets were collected and the instructions for the market were handed out. The subjects were given 15 min to read the instructions on their own after which the experimenter summarized the market via a series of bullet points placed on the overhead. After the summary, the subjects were given 5 min to complete a short quiz. The experimenter went over the answers on an overhead and then started the market. When the market finished, earnings from the risk-elicitation mechanism were calculated by draws from two bingo cages that determined the specific lottery to be used and the outcome of that lottery. The subjects were privately paid their earnings for all stages of the experiment.

4. Bubble measures

A wide array of bubble measures is used in the experimental asset markets literature. In this section, we introduce bubble measures that are relevant to our analysis.

We start by providing a quantitative criterion to identify the existence of positive and negative bubbles. One of the bubble definitions is provided by Noussair et al. (2001) in an environment with constant fundamental value: "the median transaction price in five consecutive periods is at least 50 units of experimental currency (about 13.9%) greater than the fundamental value". We modify their definition and extend it to account for both positive and negative bubbles.

In particular, we say that a session exhibits a positive bubble if the average price exceeds the fundamental value by 30% or more for at least five consecutive periods. Similarly, a negative bubble is observed if the average price falls below the fundamental value by 30% or more for at least five consecutive periods.

Given that the fundamental value is declining in our environment, we chose to increase the bubble threshold from 13.9% to 30%. Otherwise, the definition of a bubble would be too loose, especially in later periods. For example, in period 15, the fundamental value is 24 units of experimental currency, and a deviation of 3.36 units would exceed the 13.9% threshold.

Formally, we define binary indicator functions for positive and negative bubbles. Let P_{t+s} and f_{t+s} denote the average price and the fundamental value in period $t+s$, respectively.

Positive bubble indicator

$$I_+ = \begin{cases}
1 & \exists t: \frac{P_{t+s}}{f_{t+s}} \geq 1.3 \quad \text{for} \quad s = 0, 1, 2, 3, 4 \\
0 & \text{otherwise}
\end{cases}$$

Negative bubble indicator

$$I_- = \begin{cases}
1 & \exists t: \frac{P_{t+s}}{f_{t+s}} \leq 0.7 \quad \text{for} \quad s = 0, 1, 2, 3, 4 \\
0 & \text{otherwise}
\end{cases}$$

13 ORSEE (see Greiner, 2004) was used at the University of Canterbury and the IELab recruiting system was used at Indiana University.

14 See Fischbacher (1999) for a discussion of the z-Tree software package.

15 The instructions for all stages of the experiment were provided in the Supplementary online material.

16 The five Baseline sessions conducted in New Zealand had the market instructions read aloud instead of subjects reading them on their own.

17 The qualitative results of our paper are robust to extending the definition of a bubble to four consecutive periods.

Please cite this article in press as: Lugovskyk, V., et al., Asset-holdings caps and bubbles in experimental asset markets. J. Econ. Behav. Organ. (2014), http://dx.doi.org/10.1016/j.jebo.2014.04.021
Next we describe other bubble measures commonly used in the literature. The various measures described next are needed to capture different bubbles features.

Relative absolute deviation

$$\text{RAD} = \frac{1}{T} \sum_{t=1}^{T} \frac{|\bar{P}_t - f_t|}{\bar{f}}$$

The RAD measures the average level of mispricing (see Stöckl et al., 2010). It is calculated by taking the average of the absolute value of the differences between the period average price, \bar{P}_t, and the fundamental value, f_t, across all periods t, and it is normalized by the average fundamental value, \bar{f}. For example, a value of 0.10 indicates that on average mean prices per period differ 10% from the average fundamental.

Relative deviation

$$\text{RD} = \frac{1}{T} \sum_{t=1}^{T} \frac{\bar{P}_t - f_t}{\bar{f}}$$

The RD is similar to the RAD, but it uses price deviations rather than absolute price deviations (see Stöckl et al., 2010). The value of this measure indicates whether there is overvaluation or undervaluation. For example, a positive (negative) value of RD indicates that on average the asset is overvalued (undervalued).

Normalized turnover

$$\text{TR} = \frac{\sum_t n_t}{T \times \text{TSU}}$$

The TR provides the total number of transactions over the life of the asset $\sum_t n_t$ (where n_t denotes the number of transactions in period t), divided by the total number of units outstanding, TSU, normalized by the total number of periods, T. A value of 0.10 indicates that on average 10% of all units are traded in each period. Thus, a high TR value indicates a high volume of trade.

Normalized price amplitude

$$A = \frac{1}{\bar{f}} \left[\max_t (\bar{P}_t - f_t) - \min_t (\bar{P}_t - f_t) \right]$$

The A is defined as the difference between peak and trough of mean period prices relative to the fundamental value, normalized by the initial fundamental value, f_1. A high A indicates large price swings relative to the fundamental value.

Positive duration

$\text{PD} =$ the maximum number of consecutive periods in which the average price exceeds the fundamental value by at least 30%.

Negative duration

$\text{ND} =$ the maximum number of consecutive periods in which the average price is below the fundamental value by at least 30%.

A high PD (ND) indicates the presence of a positive (negative) bubble.

Haessel-R^2

$$\text{Haessel-}R^2 = (\text{coef. correlation})^2$$

The Haessel-R^2 measures the goodness-of-fit between observed (mean prices) and fundamental values. It is appropriate, since the fundamental values are exogenously given. The Haessel-R^2 tends to 1 as trading prices tend to fundamental values.
5. Results

Figs. 1–3 depict the time series of average transaction prices and fundamentals in our treatments, namely Unconstrained, Permanent Cap, and Short-term Cap. Periods are shown on the horizontal axis and average transaction prices are indicated on the vertical axis. The dashed line denoted FV indicates the fundamental value. FV+30% (FV−30%) indicates the fundamental value plus +30% (−30%) of the fundamental value, and the line denoted Max Div denotes the maximum possible total dividend (i.e., the fundamental value if the maximum dividend is realized in every period). According to Fig. 1, average transaction...
prices in the Unconstrained treatment display large departures from the fundamental value in six out of eleven sessions, while the average transaction prices remain close to the fundamental value in the remaining sessions.

In the Permanent Cap treatment, on the other hand, only one session out of five exhibits a positive bubble pattern. Thus, a permanent cap helps to dampen positive bubbles. However, as the cap becomes a binding constraint on some traders’ holdings and thus constrains the demand for asset units (roughly around period 8), average transactions prices follow downward dynamics, which eventually lead to negative bubbles. Finally, Fig. 3 indicates that in the Short-term Cap treatment there are neither positive nor negative bubbles in six out of six sessions.
Figs. 4–6 depict the time series of average price forecasts and average prices across sessions for each treatment. Average price forecasts tend to track the realized average price with one period delay. The exception is the Short-term Cap treatment where average forecasts are very close to the average prices after the cap is lifted. On average, subjects do not anticipate bubbles and crashes in the Unconstrained and Permanent Cap treatments.
Table 3
Adaptive model estimates: $F_{m}^{t} - F_{m}^{t-1} = \alpha_m + \beta (P_{m}^{t-1} - P_{m}^{t-1}) + u_{m}^{t}$.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Unconstrained</th>
<th>Permanent cap</th>
<th>Short-term cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptation coef., β</td>
<td>0.95</td>
<td>1.05</td>
<td>0.80</td>
</tr>
<tr>
<td>β</td>
<td>(0.11)**</td>
<td>(0.06)**</td>
<td>(0.05)**</td>
</tr>
<tr>
<td>Markets, fixed effect</td>
<td>2.80</td>
<td>-1.16</td>
<td>-7.98</td>
</tr>
<tr>
<td>β</td>
<td>(13.73)</td>
<td>(5.83)</td>
<td>(6.69)</td>
</tr>
<tr>
<td>Markets, fixed effect</td>
<td>7.35</td>
<td>12.59</td>
<td>3.18</td>
</tr>
<tr>
<td>β</td>
<td>(11.31)</td>
<td>(7.09)</td>
<td>(6.17)</td>
</tr>
<tr>
<td>Market4, fixed effect</td>
<td>5.99</td>
<td>-3.82</td>
<td>-6.53</td>
</tr>
<tr>
<td>β</td>
<td>(11.90)</td>
<td>(8.64)</td>
<td>(6.73)</td>
</tr>
<tr>
<td>Markets, fixed effect</td>
<td>-0.92</td>
<td>16.24</td>
<td>0.39</td>
</tr>
<tr>
<td>β</td>
<td>(14.23)</td>
<td>(7.29)*</td>
<td>(6.68)</td>
</tr>
<tr>
<td>Markets, fixed effect</td>
<td></td>
<td></td>
<td>7.49</td>
</tr>
<tr>
<td>Constant</td>
<td>-4.74</td>
<td>-4.31</td>
<td>-7.51</td>
</tr>
<tr>
<td>β</td>
<td>(11.85)</td>
<td>(3.96)</td>
<td>(5.46)</td>
</tr>
<tr>
<td>No. of obs.</td>
<td>588</td>
<td>616</td>
<td>714</td>
</tr>
<tr>
<td>R^2 adjusted</td>
<td>0.68</td>
<td>0.71</td>
<td>0.67</td>
</tr>
<tr>
<td>F-stat: $\beta = 1$</td>
<td>0</td>
<td>1</td>
<td>15*</td>
</tr>
</tbody>
</table>

Notes. P_{m}^{t} denotes the forecast of the average transaction price P_{m}^{t} in market m in period t made by subject i. The model was estimated with market-specific fixed effects, clustered by subject. The cluster-robust standard errors are shown in brackets. The last row reports F-statistics of $H_0: \beta = 1$ and corresponding significance levels at which H_0 can be rejected. Two market-specific constants are different from 0 at 5% significance level: these are market 2 and market 4 constants in the Short-term Cap treatment (the corresponding values are (−15.5) and (−14)).

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Previous experimental evidence has indicated that subjects exhibit adaptive expectations (see, e.g., Williams, 1987; Smith et al., 1988). The adaptive expectations model is given by

$$F_{t} - F_{t-1} = \beta (P_{t-1} - P_{t-1}) , 0 < \beta < 1,$$

where F_t denotes the forecast of price P_t in period t. The forecast F_t is equal to the previous period’s forecast P_{t-1} plus a fraction β of the most recent forecast error. Note that for $\beta = 1$ the equation above reduces to $F_t = P_{t-1}$ referred to as myopic or naive expectations.

We tested whether adaptive expectations are also supported by our data using the following specification

$$F_{m}^{t} - F_{m}^{t-1} = \alpha_m + \beta (P_{m}^{t-1} - P_{m}^{t-1}) + u_{m}^{t},$$

where F_{m}^{t} denotes the forecast of the average transaction price P_{m}^{t} in market m in period t made by subject i. The results reported in Table 3 show that we can reject the myopic expectations hypothesis in the Short-term Cap treatment, while we cannot rule out myopic expectations in the other two treatments.19 The range of market-specific constants is from −15.49 (Market 2, Short-term Cap) to 11.93 (Market 5, Permanent Cap). Note that all of the point estimates of the market-specific constants are greater than −24 (the francs-per-round decrease in the asset’s intrinsic dividend value). This suggests a price-persistence dynamic that is inconsistent with a simple error-learning process rooted in risk-neutral-rational expectations of the stream of future dividends.

Next for completeness we test for the regressive and extrapolative expectations (e.g., Frankel and Froot, 1987). The regressive expectations model is given by

$$F_{t} - P_{t-1} = \beta (F_{t-1} - P_{t-1}) , 0 < \beta < 1,$$

where F_t denotes the forecast of price P_t in period t, and F_{t-1} denotes the fundamental value of an asset in period $t-1$. The forecast F_t is equal to the previous period’s (average) price, P_{t-1}, plus a fraction of the most recent deviation of (average) price from fundamental value. Note that for $\beta = 1$ the equation above reduces to $F_t = F_{t-1}$ (in that case risk-neutral rational expectations would require a constant term of (−24)).

We tested whether regressive expectations are also supported by our data using the following specification

$$F_{m}^{t} - P_{m}^{t-1} = \alpha_m + \beta (F_{m}^{t-1} - P_{m}^{t-1}) + u_{m}^{t},$$

18 See Marimon and Sunder (1993), Gillette et al. (1999), Sonnemans et al. (2004), Stevens and Williams (2004), Hommes et al. (2005), and Haruvy et al. (2007) for other work exploring expectations in experimental settings.

19 The lower bounds of the 95% confidence intervals of the Adaptation Coefficient β are less than 1 for Unconstrained and Permanent Cap treatments. Thus we cannot reject the adaptive expectations hypothesis for these treatments. We also tested the joint null hypothesis of myopic expectations, ($\beta = 1$, Constant = 0), and all six markets of the Short-term Cap treatment reject the joint null at least at $p < 0.05$, while none of the markets in the other two treatments rejects the null hypothesis.

Table 4
Regressive model estimates: $F_{m}^{t} - P_{m}^{t-1} = a_{m} + \beta_{e}(P_{m}^{t-1} - P_{m}^{t-2}) + u_{m}^{t}$.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Unconstrained</th>
<th>Permanent cap</th>
<th>Short-term cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressive coef., β_{e}</td>
<td>-0.02</td>
<td>0.10</td>
<td>0.19</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>(0.13)</td>
<td>(0.04)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>1.78</td>
<td>1.58</td>
<td>-15.68</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>(20.30)</td>
<td>(5.73)</td>
<td>(8.93)</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>(9.85)</td>
<td>(7.58)</td>
<td>(7.84)</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>(14.88)</td>
<td>(8.58)</td>
<td>(7.80)</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>-4.11</td>
<td>14.08</td>
<td>-1.74</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>(27.35)</td>
<td>(6.68)</td>
<td>(8.30)</td>
</tr>
<tr>
<td>Constant</td>
<td>-4.44</td>
<td>-7.20</td>
<td>-5.62</td>
</tr>
<tr>
<td>No. of obs.</td>
<td>588</td>
<td>616</td>
<td>714</td>
</tr>
<tr>
<td>R^{2} adjusted</td>
<td>-0.01</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>F-stat, β_{e}</td>
<td>58</td>
<td>582</td>
<td>154</td>
</tr>
</tbody>
</table>

Notes: F_{m}^{t} denotes the forecast of the average transaction price P_{m} in market m in period t made by subject i, and P_{m}^{t-1} denotes the fundamental value of an asset in period $t-1$. The model was estimated with market-specific fixed effects, clustered by subject. The cluster-robust standard errors are shown in brackets. The last row reports F-statistics of $H_{0}: \beta_{e}=1$ and corresponding significance levels at which H_{0} can be rejected.

where F_{m}^{t} denotes the forecast of the average transaction price P_{m} in market m in period t made by subject i, and a_{m} denotes market-specific fixed effects. The results reported in Table 4 show that we can reject the regressive expectations hypothesis in the Unconstrained treatment, while we cannot rule out regressive expectations in the other two treatments.

The extrapolative model is given by

$$F_{m}^{t} - P_{m}^{t-1} = \beta_{e}(P_{m}^{t-1} - P_{m}^{t-2}) + u_{m}^{t}$$

where F_{m}^{t} denotes the forecast of price P_{m}^{t} in period t. The forecast F_{m}^{t} is equal to the previous period’s (average) price, P_{m}^{t-1}, plus a fraction of the most recent (average) price change. We tested whether extrapolative expectations are also supported by our data using the following specification

$$F_{m}^{t} - P_{m}^{t-1} = a_{m} + \beta_{e}(P_{m}^{t-1} - P_{m}^{t-2}) + u_{m}^{t}$$

The results reported in Table 5 show that we can reject the extrapolative expectations hypothesis for all three treatments (note that the estimate of β_{e} that is statistically significant is incorrectly signed).

Table 5
Extrapolative model estimates: $F_{m}^{t} - P_{m}^{t-1} = a_{m} + \beta_{e}(P_{m}^{t-1} - P_{m}^{t-2}) + u_{m}^{t}$.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Unconstrained</th>
<th>Permanent cap</th>
<th>Short-term cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrapolative coef., β_{e}</td>
<td>-0.03</td>
<td>0.11</td>
<td>-0.11</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>(0.07)</td>
<td>(0.08)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>8.85</td>
<td>-1.11</td>
<td>-3.04</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>(12.11)</td>
<td>(5.21)</td>
<td>(7.21)</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>8.36</td>
<td>3.96</td>
<td>6.06</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>(8.71)</td>
<td>(5.02)</td>
<td>(7.25)</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>9.69</td>
<td>-1.77</td>
<td>-2.92</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>(9.24)</td>
<td>(5.65)</td>
<td>(6.54)</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>5.16</td>
<td>11.99</td>
<td>5.30</td>
</tr>
<tr>
<td>Market, fixed effect</td>
<td>(11.45)</td>
<td>(4.85)</td>
<td>(7.72)</td>
</tr>
<tr>
<td>Constant</td>
<td>-9.32</td>
<td>-5.97</td>
<td>-10.85</td>
</tr>
<tr>
<td>No. of obs.</td>
<td>546</td>
<td>572</td>
<td>663</td>
</tr>
<tr>
<td>R^{2} adjusted</td>
<td>-0.00</td>
<td>0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Notes: F_{m}^{t} denotes the forecast of the average transaction price P_{m} in market m in period t made by subject i. The model was estimated with market-specific fixed effects, clustered by subject. The cluster-robust standard errors are shown in brackets.

* $p < 0.05$, * * $p < 0.01$, ** $p < 0.001$.

Please cite this article in press as: Lugovskyy, V., et al., Asset-holdings caps and bubbles in experimental asset markets. J. Econ. Behav. Organ. (2014), http://dx.doi.org/10.1016/j.jebo.2014.04.021
A comparison of the adjusted R^2 across Tables 3–5 indicates that the adaptive model organizes the data much better than the regressive or extrapolative models.

5.1. Concentration, bubbles, and asset holdings caps

In this section, we perform a more rigorous data analysis to confirm the informal observation that asset holdings caps have a dampening effect on asset price bubbles. We start by showing that asset holdings concentration is an important factor in bubble formation in experimental asset markets. In particular, we focus on the most aggressive (net) buyers since we conjecture that their behavior in initial periods has an important effect on price dynamics and bubble formation. Namely, the higher demand generated by these traders increases the trading price in initial periods. This fuels momentum trading (i.e., trade based on price trends, see Caginalp and Ilieva, 2008) thus generating significant upward deviations from the fundamental value.

To illustrate the impact of the most aggressive buyers on bubble formation, we adopt the Concentration Ratios (CR$_n$) as concentration measures. The Concentration Ratio CR$_n$ is the sum of the market units of the top n traders with the largest asset holdings, divided by the total number of asset units. We analyze data from 24 market sessions with unconstrained environments à la Smith et al. (1988). More information on the parameters of each session is provided in Table 6.

Result 1. The asset-holdings concentration ratio in initial periods is positively correlated with the magnitude of bubbles.

Support for Result 1: Fig. 7 shows that in initial periods, concentration measures CR$_1$, CR$_2$, CR$_3$, CR$_4$ are positively and significantly correlated with Relative Deviation and Relative Absolute Deviation bubble measures. The graphs show Kendall correlation coefficients between concentration measures in each period and bubble measures. The critical values at the 1%, 5%, and 10% significance levels are reported on the vertical axis of each graph. Correlations are the highest and most significant in initial periods, they decline over time and become statistically insignificant in later periods.

Furthermore, for a given period, the smaller is n, the higher is the correlation coefficient, indicating that the behavior of the top one or top two net buyers has the strongest effect on the size of the bubble. We obtain very similar results with other commonly used bubble measures, such as Amplitude and Haesel-R^2 (see Fig. 10 in Appendix). The results are robust (at lower significance levels) to splitting the sample into two subsamples of the newer and older data, and 11 and 13 sessions respectively. This empirical relationship between concentration and bubble measures is consistent with findings of Caginalp et al. (2000) and Caginalp and Ilieva (2008), who show that bubbles typically emerge because a limited number of traders take large positions in asset in initial periods. Motivated by these findings, we propose a policy that imposes a cap...
of 18 units on the asset holdings of each trader, which could potentially constrain the demand of the most aggressive buyers and thus limit their impact on price formation. Next, we explain our cap choice of 18 units. Recall that our baseline consists of 11 sessions with initial endowments of 10 units per trader and no constraint on individual asset holdings. Fig. 1 provides average prices for each of the 11 sessions. Note that average prices closely track the fundamental value in some sessions, while they significantly deviate from the fundamental value in others.

We classify our data into bubble and no-bubble sessions, following a criterion similar to Noussair et al. (2001). A session is classified as exhibit positive (negative) bubble if a price deviation of +30% (−30%) from the fundamental value is observed for at least five consecutive periods.\(^26\)

In order to control for the number of traders in each session, we normalized the concentration measures CR\(_1\) and CR\(_2\) by the minimum possible CR\(_1\) and CR\(_2\) for each session, respectively. For example, given our endowment of 10 asset units per trader, the minimum possible CR\(_2\) in a session with 9 traders is 2/9, the normalized CR\(_2\) is then CR\(_2\)/(2/9). Fig. 8 shows the normalized CR\(_1\) and CR\(_2\) for the first four periods of each session. Period 0 denotes the beginning of period 1 before any trade took place. Given the symmetric endowments, clearly, both normalized measures are equal to one. Our goal is to propose an asset-holdings cap that tends to be binding for the initial periods of bubble sessions but not binding for no-bubble sessions.

In Fig. 8, the normalized CR\(_1\) = 1.8 corresponds to the top owner holding 18 units and normalized CR\(_2\) = 1.8 corresponds to the top two owners holding a total of 36 units. Note that by the end of period 3, the normalized CR\(_1\) and CR\(_2\) exceed 1.8 in all six bubble sessions, while they are below 1.8 in the majority (three out of five) of the no-bubble sessions. A more restrictive cap than 18 would be binding for the majority of the no-bubble sessions, while a less restrictive one would be non-binding for some of the bubble sessions.

5.2. The impact of permanent and short-term caps

In this section, we discuss the effect of the permanent and short-term asset-holdings caps on bubble formation. Our results are summarized in Table 7. The upper part of Table 7 presents median bubble measures, defined in Section 4, for

\(^{26}\) For more detailed definitions of these and other bubble measures please see Section 4.
Table 7
Comparison of bubble measures across treatments.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>No. of sessions</th>
<th>Median bubble measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Turnover</td>
</tr>
<tr>
<td>G1</td>
<td>Unconstrained</td>
<td>11</td>
<td>0.21</td>
</tr>
<tr>
<td>G2</td>
<td>Permanent cap</td>
<td>5</td>
<td>0.19</td>
</tr>
<tr>
<td>G3</td>
<td>Short-term cap</td>
<td>6</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Group comparison

Mann–Whitney–Wilcoxon rank-sum tests (unit of observation = session bubble measure)

<table>
<thead>
<tr>
<th></th>
<th>Turnover</th>
<th>Positive duration</th>
<th>Negative duration</th>
<th>Amplitude</th>
<th>Relative deviation</th>
<th>Relative absolute deviation</th>
<th>Haessel R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>z-Value G1 = G2</td>
<td>−1.19</td>
<td>−1.79</td>
<td>2.22</td>
<td>−0.4</td>
<td>−2.1</td>
<td>−0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>z-Value G2 = G3</td>
<td>−1.1</td>
<td>−0.27</td>
<td>−1.75</td>
<td>−2.01**</td>
<td>−0.18</td>
<td>−1.46</td>
<td>1.64</td>
</tr>
<tr>
<td>z-Value G1 = G3</td>
<td>−2.61**</td>
<td>−2.34**</td>
<td>1.25</td>
<td>−2.31***</td>
<td>−2.51*</td>
<td>−2.31***</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Note.

* 10% significance level.
** 5% significance level.
*** 1% significance level.

The lower part provides the corresponding results from the Mann–Whitney–Wilcoxon test, where the unit of observation is each individual session’s bubble measure.

Result 2. The permanent asset-holdings cap reduces the magnitude of positive bubbles. Furthermore, in the Permanent-Cap treatment we observe a positive bubble only in one session out of five.

Support for Result 2: Recall that the positive duration is defined as the maximum number of consecutive periods in which the average price exceeds the fundamental value by at least 30%. As shown in Table 7, the median positive duration is equal to 6 in the Unconstrained treatment while it is 0 in the Permanent-Cap treatment. The Mann–Whitney–Wilcoxon test confirms that the positive duration is significantly higher under the Unconstrained treatment than under the Permanent Cap.

In addition, the relative deviation indicates that assets tend to be overvalued in the Unconstrained treatment, while they tend to be undervalued in the Permanent Cap. The Mann–Whitney–Wilcoxon test confirms that the relative deviation is significantly higher in the unconstrained treatment.

The previous result shows that a permanent asset-holdings cap successfully reduces positive bubbles. However, it introduces other price distortions, namely negative bubbles.

Result 3. The permanent asset-holdings cap generates negative bubbles (in later periods). In particular, in the Permanent-Cap treatment we observe negative bubbles in four out of five sessions.

Support for Result 3: Recall that the Negative Duration (ND) is defined as the maximum number of consecutive periods in which the average price falls below the fundamental value by at least 30%. As indicated in Table 7, the median ND is equal to 1 in the Unconstrained treatment while it is 5 in the Permanent Cap. The Mann–Whitney–Wilcoxon test confirms that the ND is significantly lower under the Unconstrained treatment than under the Permanent Cap.

In addition, the Relative Deviation (RD) indicates that assets tend to be overvalued in the Unconstrained treatment, while they tend to be undervalued in the Permanent Cap. The Mann–Whitney–Wilcoxon test confirms that the RD is significantly higher in the Unconstrained treatment.

Finally, we observe negative bubbles in four out five Permanent-Cap sessions and in zero out of eleven Unconstrained sessions.

As shown by Result 7 negative bubbles are observed in later periods of the Permanent Cap treatment. Intuitively, caps bind aggregate demand thus limiting the upward price trend and potentially creating a downward price trend. At some point the price drops below the fundamental value which attracts new buyers, but eventually caps become binding even for these new traders and the price stays below the fundamental value. The Short-term Cap treatment addresses this problem by relaxing the asset-holdings cap in later periods.

Result 4. Under the Short-term Cap treatment, we observe no positive bubbles in six out of six sessions. In addition, the short-term asset holdings cap does not generate negative bubbles.

Please cite this article in press as: Lugovsky, V., et al., Asset-holdings caps and bubbles in experimental asset markets. J. Econ. Behav. Organ. (2014), http://dx.doi.org/10.1016/j.jebo.2014.04.021
Support for Result 4: As shown in Table 7, the median of the Positive Duration (PD) is 0 for the short-term asset holdings cap and 6 in the Unconstrained treatment. The Mann–Whitney–Wilcoxon test confirms that the PD is significantly higher in the Unconstrained treatment. Moreover, all bubble measures other than Negative Duration (ND) indicate that bubbles are significantly reduced under the Short-term Cap compared to the Unconstrained treatment. The ND in the Short-term Cap treatment, on the other hand, is not significantly different compared to the Unconstrained treatment and it is significantly lower than in the Permanent Cap treatment. This confirms that negative bubbles are mainly prominent in the Permanent Cap treatment (recall that a high ND indicates the presence of negative bubbles).

Finally, as shown in Fig. 3, there are no negative bubbles in six out of six sessions under the Short-term Cap treatment.

Fig. 9 further indicates that caps are effective in constraining the most aggressive buyers under the Short-term Cap treatment. Indeed, after the cap is lifted, Fig. 9 suggests that the normalized concentration ratios CR1 and CR2 increase substantially. A Wilcoxon signed-rank test on the six sessions in the Short-term treatment indicates that the normalized concentration ratios CR1 and CR2 are statistically significantly higher in period 9 (after the cap is lifted) compared to period 8 (p = 0.051 for CR1 and p = 0.073 for CR2).

To summarize, imposing appropriate caps on individual asset holdings helps to reduce or eliminate bubbles by constraining demand. Under the Permanent Cap treatment, as asset-holdings caps become binding for more and more traders, they generate downward price dynamics which lead to negative bubbles. The price falls below the fundamental value and tends to stay low, since the permanent cap restricts demand even when the price falls below the fundamental value. As new large asset holders emerge in the market, they quickly face the cap’s binding constraint (see supplementary online material for evidence of this phenomenon). Importantly, permanent caps do not have a statistically significant effect on the overall trading volume (see Turnover in Table 7). Thus, the reduction of positive bubbles cannot be attributed to a lower number of transactions.28 A short-term cap, on the other hand, does not result in negative bubbles. After the cap is removed, both new buyers and the largest existing net buyers have the opportunity to buy thus contributing to higher aggregate demand and preventing negative bubbles.29

6. Conclusions

This paper explores the effect of individual-trader asset holdings caps on price dynamics and bubble formation in laboratory double-auction markets. We conclude that permanent caps reduce positive bubbles by imposing a constraint on the most aggressive (net) buyers, but these caps introduce negative bubbles in the latter half of the trading horizon by limiting demand at prices below the fundamental value. More importantly, with short-term caps neither positive nor negative bubbles are observed.

Housing-control policies via caps were imposed in the real-estate market in major cities in China in 2010 in an attempt to bring house prices to reasonable levels. The empirical results presented in this paper suggest that policymakers should monitor house prices and lift caps if prices exhibit sudden drops in order to prevent the formation of negative bubbles. That is, the implication for field environments, where the relevant time horizon are unknown and presumably very long, is that caps should be appropriately introduced and lifted endogenously in response to sudden increases and decreases in prices. Indeed, there is evidence that caps respond to economic conditions as in Shanghai at the beginning of 2012 when purchase restrictions were eased and then tightened again in June 2012.

28 The short-term cap should not restrict trading volumes more than the permanent cap, since it has shorter duration. Thus, the fact that we observe a lower turnover in the short-term Cap treatment is due to endogenous factors, e.g., trading prices close to fundamental value.
29 As shown in the supplementary online material, the new large asset holders do not appear as often in the Short-term as in the Permanent Cap treatment. However, the existing large asset holders now also have the opportunity to buy more.

Please cite this article in press as: Lugovskyy, V., et al., Asset-holdings caps and bubbles in experimental asset markets. J. Econ. Behav. Organ. (2014), http://dx.doi.org/10.1016/j.jebo.2014.04.021
Regulations of individual asset-holdings are also in place in the stock exchange markets. For example, the US Security and Exchange Commission requires filing and public disclosures from anyone who acquires more than 5 percent of the outstanding shares of any class of a corporation (Williams Act).\(^\text{30}\) In UK, concentration related policies are in place in order to ensure equal treatment of all shareholders. In particular, the City Code on Takeovers and Mergers requires from a person or a group which accumulated 30% of the voting rights of a company, to make a cash offer to all other shareholders at the highest price paid in the 12 months before the offer was announced.\(^\text{31}\) This indicates that it is possible to keep track of individual asset-holdings also in the stock market and thus it could be possible to apply demand-control policies also in field stock markets if necessary.

\(^{31}\) For more details please visit the official code website, http://www.thetakeoverpanel.org.uk/the-code/download-code. The threshold is set at 30% since this is the level considered to be sufficient to gain an effective control over a company.
On the other hand, we recognize that there are additional challenges in the field which are absent in the lab. For example, in many cases it is not clear what the fundamental value of an asset is in the field, which would make the timing of the implementation of caps more difficult than in laboratory economies.

Finally, in this paper, we explored concentration-control policies in the Smith et al. (1988) environment, which is most commonly used in experimental asset markets. Given our focus on policies designed to eliminate bubbles, this framework was a natural choice since bubbles have been shown to be robust in this environment. However, we leave for future research the exploration of these policies in other environments.

Appendix A.

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.jebo.2014.04.021.

References

