1. All L^p based sizes are essentially the same

Let \mathcal{I} be a finite collection of dyadic intervals, and let $(a_I)_{I \in \mathcal{I}}$ be some complex numbers. Define the maximal size of \mathcal{I} by

$$\text{size}^*(\mathcal{I}) := \sup_{J \text{ interval}} \left(\frac{1}{|J|} \sum_{I \subset J} |a_I|^2 \right)^{1/2} = \sup_{J \text{ interval}} \frac{1}{|J|^{1/2}} \| \left(\sum_{I \subset J} |a_I|^2 \frac{1}{|I|} \right)^{1/2} \|_{L^2}. $$

Prove that

$$\text{size}^*(\mathcal{I}) \sim \sup_{J \text{ interval}} \frac{1}{|J|} \| \left(\sum_{I \subset J} |a_I|^2 \frac{1}{|I|} \right)^{1/2} \|_{L^1 \rightarrow \infty}. $$

Comment: This is some version of John-Nirenberg’s inequality. The fact that $\text{RHS} \lesssim \text{LHS}$ follows directly from Holder, since $\left(\sum_{I \subset J} |a_I|^2 \frac{1}{|I|} \right)^{1/2}$ is supported on J.

Hint: Denote by A the RHS. Let J be such that

$$\alpha^2 := \text{size}^*(\mathcal{I})^2 |J| = \sum_{I \subset J} |a_I|^2. $$

Note that

$$|B := \{ x : \left(\sum_{I \subset J} |a_I|^2 \frac{1}{|I|} \right)^{1/2} > 2A \}| \leq \frac{1}{2} |J|$$

Note that B is the disjoint union of dyadic intervals I_1, \ldots, I_N. Estimate

$$\sum_{I \subset J} |a_I|^2 = \sum_i \sum_{I \subset I_i} |a_I|^2 + \sum_{I \notin \mathcal{I}_0} |a_I|^2,$$

from above, for some appropriate collection \mathcal{I}_0. Find a pointwise upper bound for

$$\left(\sum_{I \in \mathcal{I}_0} |a_I|^2 \frac{1}{|I|} \right)^{1/2}. $$

Conclude that something like $\alpha^2 \lesssim \frac{1}{2} \alpha^2 + 4A^2 |J|$ holds.

2. Single tree estimate: M_1 controls the size.

The notation is as in Problem 1 above. Let $f : \mathbb{R} \rightarrow \mathbb{C}$, and let ϕ_I be functions L^2 adapted to I (of sufficiently large order, this should not be an issue) whose Fourier transform is supported away from the origin. Let $a_I := \langle f, \phi_I \rangle$. Prove that

$$\text{size}^*(\mathcal{I}) \lesssim \max_{I \in \mathcal{I}} \inf_{x \in I} M_1 f(x),$$

where $M_1 f(x) = M f(x)$ is the usual HL maximal function.

Comment: ϕ_I having mean zero would suffice. One would have to apply the principle behind Problem 3/Hw 7, and decompose each ϕ_I is LP pieces supported away from the origin (the mean zero condition will ensure extra decay for the pieces).
This is the M_1 version of Cor/160 (and it strengthens it, since, by Holder, $M_1 f(x) \leq M_2 f(x)$), and the proof follows the same lines. First, note that by problem 1 above, it suffices to work with $$\frac{1}{|J|} \left(\sum_{I \in \mathcal{I}} |\langle f, \phi_I \rangle|^2 \frac{1}{|I|} \right)^{1/2} \| L^{1, \infty}.$$ Recall that (this is essentially Problem 1/hw8) whenever ψ_I are L^2 adapted to I and have mean zero, the square function maps L^1 to L^∞, that is $$\| \left(\sum_{I \in \mathcal{D}} |\langle g, \psi_I \rangle|^2 \frac{1}{|I|} \right)^{1/2} \|_{L^{1, \infty}} \lesssim \| g \|_1.$$ Finally, use the localization trick, (Prop/151). Most of the details for this problem are in the notes.

3. Prove that $$\| \sum_{k=1}^N a_k e^{2\pi i x 2^k} \|_{BMO_{\Delta}(\mathbb{R})} \lesssim \| a_k \|_{l^2}$$ with the implicit constant independent of N.

Hint: The proof is very similar to the proof of P3/hw9.

4. Use the result of P3 above and the John Nirenberg inequality to prove that $$\| \sum_{k=1}^N a_k e^{2\pi i x 2^k} \|_{L^p([0,1])} \lesssim_p \| a_k \|_{l^2},$$ for each $\infty > p > 2$.

Comment: The same is true for $p < 2$, simply by Holder. This problem provides another proof to P4/hw 7. The moral is that, in general, when various L^p norms are equivalent, there is a BMO type estimate behind it. Note also that the result is false for $p = \infty$.

Hint: Use P3 above and Obs. 2/142.