Dynamic Effects of Government Investment

Eric Leeper, Todd Walker, and Shu-Chun Yang

First Annual IU Economic Graduate Alumni Conference
April 18, 2009

The views expressed in this talk are those of authors and should not be interpreted as those of the Congressional Budget Office.
Conventional Analysis about G

In analysis with neoclassical growth models

- G is often assumed to be non-productive and financed by lump-sum taxes.
- An exogenous, unanticipated $G \uparrow$, $C \downarrow$, $L \uparrow$, and $Y \uparrow$ because of negative wealth effects.
- $I \uparrow \text{ or } \downarrow$, depending the persistence of the G increase.
Productive G

- When G is productive, such as government investment (G^I), it forms public capital K^G, which enters the production function.
- In contrast to non-productive G, $C \uparrow$ in later periods, and $Y \uparrow$ because of more productive K^G.
- The analysis generally supports the idea of increasing G^I as a countercyclical tool.
 - It stimulates aggregate demand through higher G and C, and promotes economic growth through higher productivity, as shown in Baxter and King (1993) and Kamps (2004).
Productive G

- When G is productive, such as government investment (G^I), it forms public capital K^G, which enters the production function.
- In contrast to non-productive G, $C \uparrow$ in later periods, and $Y \uparrow$ because of more productive K^G.
- The analysis generally supports the idea of increasing G^I as a countercyclical tool.
 - It stimulates aggregate demand through higher G and C, and promotes economic growth through higher productivity, as shown in Baxter and King (1993) and Kamps (2004).
When G is productive, such as government investment (G^I), it forms public capital K^G, which enters the production function.

In contrast to non-productive G, $C \uparrow$ in later periods, and $Y \uparrow$ because of more productive K^G.

The analysis generally supports the idea of increasing G^I as a countercyclical tool.

- It stimulates aggregate demand through higher G and C, and promotes economic growth through higher productivity, as shown in Baxter and King (1993) and Kamps (2004).
Two factors neglected

- G^I is subject to substantial implementation delays.
 - They require coordination among federal, state, and local governments and have to go through a long process of planning, bidding, contracting, construction, and evaluation.
- Deficit-financed G^I induces future fiscal adjustments that may not be lump-sum.
 - The quickly deteriorated federal budget and the projection of an unsustainable path suggest that some future policy must adjust.
Two factors neglected

- G^I is subject to substantial implementation delays.
 - They require coordination among federal, state, and local governments and have to go through a long process of planning, bidding, contracting, construction, and evaluation.
- Deficit-financed G^I induces future fiscal adjustments that may not be lump-sum.
 - The quickly deteriorated federal budget and the projection of an unsustainable path suggest that some future policy must adjust.
Two factors neglected

- G^I is subject to substantial implementation delays.
 - They require coordination among federal, state, and local governments and have to go through a long process of planning, bidding, contracting, construction, and evaluation.
- Deficit-financed G^I induces future fiscal adjustments that may not be lump-sum.
 - The quickly deteriorated federal budget and the projection of an unsustainable path suggest that some future policy must adjust.
We examine these two issues in DSGE models calibrated to U.S. data.

 - Foresight about productive G generates positive wealth effects, and agents postpone increasing L and I. The combination of these two effects can discourage saving and work initially.

- Consider various delayed fiscal adjustments: T or $G^C \downarrow$, or τ^K or $\tau^L \uparrow$.
We examine these two issues in DSGE models calibrated to U.S. data.

 - Foresight about productive G generates positive wealth effects, and agents postpone increasing L and I. The combination of these two effects can discourage saving and work initially.
- Consider various delayed fiscal adjustments: T or $G^C \downarrow$, or τ^K or $\tau^L \uparrow$.
What We Do

We examine these two issues in DSGE models calibrated to U.S. data.

 - Foresight about productive G generates positive wealth effects, and agents postpone increasing L and I. The combination of these two effects can discourage saving and work initially.
- Consider various delayed fiscal adjustments: T or $G^C \downarrow$, or τ^K or $\tau^L \uparrow$.
We examine these two issues in DSGE models calibrated to U.S. data.

 - Foresight about productive G generates positive wealth effects, and agents postpone increasing L and I. The combination of these two effects can discourage saving and work initially.

- Consider various delayed fiscal adjustments: T or $G^C \downarrow$, or τ^K or $\tau^L \uparrow$.
WHAT WE DO

We examine these two issues in DSGE models calibrated to U.S. data.

 - Foresight about productive G generates positive wealth effects, and agents postpone increasing L and I. The combination of these two effects can discourage saving and work initially.

- Consider various delayed fiscal adjustments: T or $G^C \downarrow$, or τ^K or $\tau^L \uparrow$.
What We Find

- Implementation delays can result in little or negative labor and output responses during the beginning periods after the enactment of a spending bill.

- Financing instruments and productiveness of public capital matter qualitatively for the long-run growth effects.
What We Find

- Implementation delays can result in little or negative labor and output responses during the beginning periods after the enactment of a spending bill.

- Financing instruments and productiveness of public capital matter qualitatively for the long-run growth effects.
The Private Sector: Agents

The agent derives utility from consumption \((C_t)\) and leisure \((1 - L_t)\).

\[
U_t \equiv \frac{1}{1 - e} \left(\frac{C_t}{C_{t-1}^b} \right)^{1-e} + \chi \frac{(1 - L_t)^{1-\theta} - 1}{1 - \theta},
\]

The infinitely lived agent maximizes expected lifetime utility

\[
E_t \sum_{t=0}^{\infty} \beta^t U_t (C_t, C_{t-1}, L_t),
\]

subject to

\[
C_t + I_t + B_t + \psi(u_t)K_{t-1} = (1 - \tau^K_t) r_t u_t K_{t-1} + (1 - \tau^L_t) w_t L_t + R_{t-1} B_{t-1} + T_t,
\]

\[
K_t = (1 - \delta) K_{t-1} + \Omega (I_t, I_{t-1}).
\]
The Private Sector: Firms

The economy produces goods according to

\[Y_t = A (u_t K_{t-1})^{\alpha_K} (L_t)^{\alpha_L} (K_{t-1}^G)^{\alpha_G}, \]

The representative firm rents private capital and labor at the rates of \(r_t \) and \(w_t \) to maximize profit

\[Y_t - r_t u_t K_{t-1} - w_t L_t. \]
The economy produces goods according to

\[Y_t = A (u_t K_{t-1})^{\alpha_K} (L_t)^{\alpha_L} (K_{t-1}^G)^{\alpha_G}, \]

The representative firm rents private capital and labor at the rates of \(r_t \) and \(w_t \) to maximize profit

\[Y_t - r_t u_t K_{t-1} - w_t L_t. \]
The flow government budget constraint is

\[\tau^K_t r_t u_t K_{t-1} + \tau^L_t w_t L_t + B_t = G^C_t + G^I_t + R_{t-1} B_{t-1} + T_t. \]
We separate budget authority (A^I) from outlays (G^I).

Government investment decisions follow

$$\hat{A}_t^I = \rho I \hat{A}_{t-1}^I + \varepsilon_t.$$

The law of motion for K^G is

$$K_t^G = (1 - \delta_G) K_{t-1}^G + A_{t-N+1}^I,$$

Government investment implemented (outlays) is

$$G_t^I = \sum_{n=0}^{N-1} \phi_n A_{t-n}^I, \quad \sum_{n=0}^{N-1} \phi_n = 1$$
MODELING G^I

- We separate budget authority (A^I) from outlays (G^I).
- Government investment decisions follow

$$\hat{A}^I_t = \rho I \hat{A}^I_{t-1} + \varepsilon_t.$$

- The law of motion for K^G is

$$K^G_t = (1 - \delta_G) K^G_{t-1} + A^I_{t-N+1},$$

- Government investment implemented (outlays) is

$$G^I_t = \sum_{n=0}^{N-1} \phi_n A^I_{t-n}, \sum_{n=0}^{N-1} \phi_n = 1$$
Modeling G^I

- We separate budget authority (A^I) from outlays (G^I).
- Government investment decisions follow

$$\hat{A}^I_t = \rho I \hat{A}^I_{t-1} + \varepsilon_t.$$

- The law of motion for K^G is

$$K^G_t = (1 - \delta_G) K^G_{t-1} + A^I_{t-N+1},$$

- Government investment implemented (outlays) is

$$G^I_t = \sum_{n=0}^{N-1} \phi_n A^I_{t-n}, \quad \sum_{n=0}^{N-1} \phi_n = 1.$$
MODELING G^I

- We separate budget authority (A^I) from outlays (G^I).
- Government investment decisions follow
 \[
 \hat{A}_t^I = \rho I \hat{A}_{t-1}^I + \varepsilon_t.
 \]
- The law of motion for K^G is
 \[
 K_t^G = (1 - \delta_G) K_{t-1}^G + A^I_{t-N+1},
 \]
- Government investment implemented (outlays) is
 \[
 G_t^I = \sum_{n=0}^{N-1} \phi_n A^I_{t-n}, \quad \sum_{n=0}^{N-1} \phi_n = 1
 \]
Modeling G^I

- We separate budget authority (A^I) from outlays (G^I).
- Government investment decisions follow
 \[\hat{A}^I_t = \rho_I \hat{A}^I_{t-1} + \varepsilon_t. \]

- The law of motion for K^G is
 \[K^G_t = (1 - \delta_G) K^G_{t-1} + A^I_{t-N+1}, \]

- Government investment implemented (outlays) is
 \[G^I_t = \sum_{n=0}^{N-1} \phi_n A^I_{t-n}, \quad \sum_{n=0}^{N-1} \phi_n = 1. \]
Implementation Delays: Example I

Estimated costs for highway construction in Title XII of the American Recovery and Reinvestment Act of 2009

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget Authority</td>
<td>27.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27.5</td>
</tr>
<tr>
<td>Estimated Outlay</td>
<td>2.75</td>
<td>6.875</td>
<td>5.5</td>
<td>4.125</td>
<td>3.025</td>
<td>2.75</td>
<td>1.925</td>
<td>.55</td>
<td>27.5</td>
</tr>
</tbody>
</table>

Implementation Delays: Example II

Estimated costs for the National Highway Bridge Reconstruction and Inspection Act of 2008 (not enacted)

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2009-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget Authority</td>
<td>1,029</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1,049</td>
</tr>
<tr>
<td>Estimated Outlay</td>
<td>280</td>
<td>425</td>
<td>169</td>
<td>56</td>
<td>46</td>
<td>976</td>
</tr>
</tbody>
</table>

Debt Financing

- Financing rules

\[x_t = c^x + \rho^x x_{t-1} + q_t^x s_t^B, \]

where \(x \in \{T, \tau^K, \tau^L, G^C\} \)

- Time-varying fiscal adjustment parameters.

\[q_t^i = d^i \log s_{t-1}^B, \quad i \in \{T, L, K, C\}, \]

where \(d^i = \frac{\log s_t^B}{q^i} \)
• Financing rules

\[x_t = c^x + \rho^x x_{t-1} + q^x s^B_{t-8}, \]

where \(x \in \{T, \tau^K, \tau^L, G^C\} \)

• Time-varying fiscal adjustment parameters.

\[q_t^i = d^i \log s^B_{t-1}, \quad i \in \{T, L, K, C\}, \]

where \(d^i = \frac{\log s^B}{q^i} \)
Calibration

<table>
<thead>
<tr>
<th>Param</th>
<th>Value</th>
<th>Param</th>
<th>Value</th>
<th>Param</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^K</td>
<td>.36</td>
<td>τ^L</td>
<td>.21</td>
<td>$\psi''(1)/\psi'(1)$</td>
<td>.18</td>
</tr>
<tr>
<td>α^L</td>
<td>.64</td>
<td>τ^K</td>
<td>.39</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>α^G</td>
<td>[.05, 0.1]</td>
<td>s^T</td>
<td>.07</td>
<td>γ</td>
<td>2</td>
</tr>
<tr>
<td>δ</td>
<td>.025</td>
<td>s^GI</td>
<td>.04</td>
<td>u</td>
<td>1</td>
</tr>
<tr>
<td>δ_D</td>
<td>.02</td>
<td>s^{GC}</td>
<td>.16</td>
<td>ϕ_0</td>
<td>0</td>
</tr>
<tr>
<td>e, θ</td>
<td>2</td>
<td>q_T</td>
<td>-0.0006</td>
<td>$\phi_1 \sim \phi_3$</td>
<td>.083</td>
</tr>
<tr>
<td>b</td>
<td>.25</td>
<td>q_L</td>
<td>.0013</td>
<td>$\phi_4 \sim \phi_7$</td>
<td>.105</td>
</tr>
<tr>
<td>χ</td>
<td>6.63</td>
<td>q_K</td>
<td>.0035</td>
<td>$\phi_8 \sim \phi_{11}$</td>
<td>.083</td>
</tr>
<tr>
<td>β</td>
<td>.99</td>
<td>q_C</td>
<td>-0.0004</td>
<td>$\rho_I, \rho_T, \rho_C, \rho_K, \rho_L$</td>
<td>.9</td>
</tr>
</tbody>
</table>

Table 3: Benchmark calibration, $N = 12$
Basic Effects about \(G^I \)

- Crowding-out effects: *ceteris paribus*, a higher \(G \) means fewer goods available for \(C \) and \(I \).
- Negative wealth effects: higher \(G \) implies higher taxes, so cut \(C \) and increase \(L \).
- Positive wealth effects when \(G \) is productive: expecting higher \(K^G \) discourages work and saving.
- Finally, when \(K^G \) is gradually built up, higher MPK and MPL encourage \(I \) and \(L \) in later periods.
Basic Effects about G^I

- Crowding-out effects: *ceteris paribus*, a higher G means fewer goods available for C and I.
- Negative wealth effects: higher G implies higher taxes, so cut C and increase L.
- Positive wealth effects when G is productive: expecting higher K^G discourages work and saving.
- Finally, when K^G is gradually built up, higher MPK and MPL encourage I and L in later periods.
Basic Effects about G^I

- Crowding-out effects: *ceteris paribus*, a higher G means fewer goods available for C and I.
- Negative wealth effects: higher G implies higher taxes, so cut C and increase L.
- Positive wealth effects when G is productive: expecting higher K^G discourages work and saving.
- Finally, when K^G is gradually built up, higher MPK and MPL encourage I and L in later periods.
Basic Effects about G^I

- Crowding-out effects: *ceteris paribus*, a higher G means fewer goods available for C and I.
- Negative wealth effects: higher G implies higher taxes, so cut C and increase L.
- Positive wealth effects when G is productive: expecting higher K^G discourages work and saving.
- Finally, when K^G is gradually built up, higher MPK and MPL encourage I and L in later periods.
Basic Effects about G^I

- Crowding-out effects: *ceteris paribus*, a higher G means fewer goods available for C and I.
- Negative wealth effects: higher G implies higher taxes, so cut C and increase L.
- Positive wealth effects when G is productive: expecting higher K^G discourages work and saving.
- Finally, when K^G is gradually built up, higher MPK and MPL encourage I and L in later periods.
A Permanent Increase in G^I

Figure 1: Dashed-dotted lines: $\alpha^G = 0$; solid lines: $\alpha^G = 0.05$; dashed lines: $\alpha^G = 0.1$.
A Transitory Increase in G^I

Figure 2: Dashed-dotted lines: $\alpha^G = 0$; solid lines: $\alpha^G = 0.05$; dashed lines: $\alpha^G = 0.1$.
Effects of Implementation Delays

Figure 3: Dashed lines: 1q ttb; dotted lines: 1y ttb; solid lines: 3y ttb.
Effects of Fiscal Adjustments

Figure 4: $\alpha^G = 0.1$. Dashed lines: 1q ttb; dotted lines: 1y ttb; solid lines: 3y ttb.
ALTERNATIVE MODEL SPECIFICATIONS

- Government consumption generates utility
 \[\tilde{C}_t = \left[\phi C_t^{\frac{v-1}{v}} + (1 - \phi) \left(G_t^{C'} \right)^{\frac{v-1}{v}} \right]^{\frac{v}{v-1}}, \text{ with } 0 \leq \phi \leq 1, v > 0. \]

- One year to build private capital
- A two-sector model with government production

None of these variations change the key message of the paper: productive government investment needs not always be expansionary. The longer the implementation delays, the later labor and output turn positive.
Alternative Model Specifications

- Government consumption generates utility

\[\tilde{C}_t = \left[\phi C_t^{\frac{v-1}{v}} + (1 - \phi) \left(G_t^{C'} \right)^{\frac{v-1}{v}} \right]^{\frac{v}{v-1}}, \text{ with } 0 \leq \phi \leq 1, v > 0. \]

- One year to build private capital
- A two-sector model with government production

None of these variations change the key message of the paper: productive government investment needs not always be expansionary. The longer the implementation delays, the later labor and output turn positive.
ALTERNATIVE MODEL SPECIFICATIONS

- Government consumption generates utility

\[\tilde{C}_t = \left[\phi C_t^{\frac{v-1}{v}} + (1 - \phi) \left(G_t^C\right)^{\frac{v-1}{v}} \right]^{\frac{v}{v-1}}, \text{ with } 0 \leq \phi \leq 1, v > 0. \]

- One year to build private capital

- A two-sector model with government production

None of these variations change the key message of the paper: productive government investment needs not always be expansionary. The longer the implementation delays, the later labor and output turn turn positive.
Alternative Model Specifications

- Government consumption generates utility

\[\tilde{C}_t = \left[\phi C_t^{\frac{v-1}{v}} + (1 - \phi) \left(G_t^C \right)^{\frac{v-1}{v}} \right]^{\frac{v}{v-1}}, \text{ with } 0 \leq \phi \leq 1, v > 0. \]

- One year to build private capital

- A two-sector model with government production

None of these variations change the key message of the paper: productive government investment needs not always be expansionary. The longer the implementation delays, the later labor and output turn turn positive.
Alternative Model Specifications

- Government consumption generates utility

\[\tilde{C}_t = \left[\phi C_t^{\frac{v-1}{v}} + (1 - \phi) \left(G_t^C \right)^{\frac{v-1}{v}} \right]^{\frac{v}{v-1}}, \text{ with } 0 \leq \phi \leq 1, v > 0. \]

- One year to build private capital
- A two-sector model with government production

None of these variations change the key message of the paper: productive government investment needs not always be expansionary. The longer the implementation delays, the later labor and output turn positive.
Cumulative output multipliers

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha^G = 0.1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Q delay</td>
<td>2.63</td>
<td>1.40</td>
<td>2.25</td>
<td>2.47</td>
</tr>
<tr>
<td>1Y delay</td>
<td>2.61</td>
<td>1.44</td>
<td>2.31</td>
<td>2.62</td>
</tr>
<tr>
<td>3Y delay</td>
<td>2.37</td>
<td>1.29</td>
<td>2.23</td>
<td>2.34</td>
</tr>
<tr>
<td>$\alpha^G = 0.05$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Q delay</td>
<td>−0.06</td>
<td>−0.57</td>
<td>0.20</td>
<td>−0.52</td>
</tr>
<tr>
<td>1Y delay</td>
<td>−0.01</td>
<td>−0.47</td>
<td>0.28</td>
<td>−0.28</td>
</tr>
<tr>
<td>3Y delay</td>
<td>−0.08</td>
<td>−0.51</td>
<td>0.28</td>
<td>−0.37</td>
</tr>
</tbody>
</table>

Table 4: M1: main model; M2: G^C is a complement to C; M3: TTB for K; M4: G production.
Conclusion

- When including implementation delays, productive G^I may not expand employment and output in the short run.

- In the longer horizons, the choice of fiscal adjustment instruments is important for minimizing the negative effects from stabilizing government debt. When K^G is not sufficiently productive, productive G^I can be contractionary in out years.
Conclusion

- When including implementation delays, productive G^I may not expand employment and output in the short run.
- In the longer horizons, the choice of fiscal adjustment instruments is important for minimizing the negative effects from stabilizing government debt. When K^G is not sufficiently productive, productive G^I can be contractionary in out years.
Caveats

• This paper is not a scoring exercise for government investment in the stimulus package.
• The models we use have a neoclassical framework, which does not have a frozen credit market or insufficient demand as in the current recession.
Caveats

• This paper is not a scoring exercise for government investment in the stimulus package.
• The models we use have a neoclassical framework, which does not have a frozen credit market or insufficient demand as in the current recession.