Out of BD

Exercises 2.5

4) The only critical point is \(y = 0 \) and it is unstable since \(f(y) \times y > 0 \) for \(y \neq 0 \).

9) The critical points are \(y = 0, 1, -1 \). The origin is semistable, \(y = 1 \) is unstable and \(y = -1 \) is asymptotically stable.

22) (a) \(f(y) = \alpha y(1 - y) \) with \(\alpha > 0 \), so the equilibrium points are \(y = 0 \) (unstable) and \(y = 1 \) (asymptotically stable).

(b) Rewrite the equation as

\[
\frac{y'}{y(1 - y)} = \alpha.
\]

Noting that

\[
\frac{1}{y(1 - y)} = \frac{1}{y} + \frac{1}{1 - y} = (\ln |y| - \ln |1 - y|)' \]

we get, upon integrating the ODE and using the initial condition \(y(0) = y_0 \),

\[
\frac{|y(t)|}{|1 - y(t)|} = \frac{|y_0|}{|1 - y_0|} e^{\alpha t}.
\]

By assumption we know that \(0 < y_0 < 1 \), and the same is true for \(y(t) \) for \(t \geq 0 \), so we get

\[
y(t) = \frac{y_0 e^{\alpha t}}{y_0 e^{\alpha t} + 1 - y_0} = \frac{1}{1 + (1/y_0 - 1)e^{-\alpha t}}
\]

which converges to 1 as \(t \to \infty \).

23) \(y' = -\beta y, \quad x' = -\alpha xy, \quad x, y > 0 \).

(a) \(y(t) = y_0 e^{-\beta t} \).

(b)

\[x' = -\alpha y_0 e^{-\beta t} x \]

so

\[
\ln \frac{|x(t)|}{|x_0|} = -\int_0^t \alpha y_0 e^{-\beta s} ds = \frac{\alpha y_0}{\beta} (e^{-\beta t} - 1)
\]

\[
x(t) = x_0 \exp \left[-\frac{\alpha y_0}{\beta} (1 - e^{-\beta t}) \right]
\]

(c)

\[
\lim_{t \to \infty} x(t) = x_0 e^{-\alpha y_0/\beta}.
\]
Out of MG

1) The equilibrium points are the zeros of \(f(N) = (a - bN)N - h \), namely

\[
N = \frac{a}{2b} + \sqrt{\frac{a^2}{4b^2} - \frac{h}{b}}, \quad a = \frac{a^2}{2b} - \sqrt{\frac{a^2}{4b^2} - \frac{h}{b}}.
\]

The first one is asymptotically stable and the second one is unstable, provided they are real and distinct, that is

\[h < \frac{a^2}{4b}. \]

If \(h = \frac{a^2}{4b} \) then \(N = \frac{a}{2b} \) is a semistable equilibrium, and if \(h > \frac{a^2}{4b} \) then the ODE has no equilibrium points and \(N(t) \to -\infty \) as \(t \to \infty \).

4f) Since \(|\sin x| \leq |x|\) for all \(x \), the curves \(y = 3x \) and \(y = \sin x \) can only intersect at \(x = 0 \). Furthermore, \(f(x) = 3x - \sin x > 0 \) for \(x > 0 \) and \(f(x) = -f(-x) < 0 \) for \(x < 0 \). Thus the only equilibrium point is \(x = 0 \), and it is unstable.

Problem A:

\[f(P) = P(P - 1,000)(10,000 - P) \]

The equilibrium points are \(P_1 = 0, P_2 = 1,000 \) and \(P_3 = 10,000 \). \(P_1 \) and \(P_3 \) are asymptotically stable and \(P_2 \) is unstable.

Problem B:

The zeros of \(g \) are \(y_0 = 0 \) and \(y_n = \frac{1}{n\pi}, n \in \mathbb{Z} \setminus \{0\} \). For \(y \neq 0 \) we have

\[g'(y) = 2y \sin(1/y) - \cos(1/y) \]

so that, for \(n \neq 0 \),

\[g'(y_n) = -\cos(n\pi) \]

which is positive if \(n \) is odd and negative if \(n \) is even. Thus \(y_n \) is asymptotically stable for \(n \) even, and unstable for \(n \) odd.

To see that \(y_0 \) is stable, let \(\epsilon > 0 \) be given. Since \(y_n \to 0 \) as \(n \to \pm \infty \), there exists an odd positive integer \(n_0 \) such that \(\frac{1}{n_0\pi} < \epsilon \). Let \(\delta = \frac{1}{n_0\pi} \) and assume \(|y(0)| < \delta \). Since \(y_{n_0} \) and \(y_{-n_0} \) are unstable, \(y(t) \) will stay inside the interval \((-\delta, \delta)\) for all \(t \geq 0 \), and so it will lie in the interval \((-\epsilon, \epsilon)\) by construction. Hence \(y(t) \in (-\epsilon, \epsilon) \) for all \(t \geq 0 \), so \(y_0 = 0 \) is a stable equilibrium.

Furthermore, if \(y(0) \neq 0 \) then there exists an even integer \(n \) such that \(y_{n+2} \leq y(0) \leq y_n \), and so either \(y(0) = y_{n+1} \), in which case \(y(t) = y_{n+1} \) for all \(t \geq 0 \), or \(y(t) \) approaches \(y_n \) or \(y_{n+2} \) as \(t \to \infty \). Either way, \(\lim_{t \to \infty} y(t) \neq 0 = y_0 \), so the origin is not asymptotically stable.
Problem C:

\[y' - 2y - e^{3t} \leq 0. \]

Multiplying by a positive function does not affect the inequality, so we have

\[e^{-2t}y' - 2e^{-2t}y - e^t \leq 0 \]

namely,

\[(e^{-2t}y - e^t)' \leq 0. \]

This means that the function \(t \mapsto e^{-2t}y(t) - e^t \) is non-decreasing. Thus, for \(t \geq 0 \),

\[e^{-2t}y(t) - e^t \leq e^{-2\times 0}y(0) - e^0 = 1, \]

\[y(t) \leq e^{3t} + e^{2t}, \quad t \geq 0. \]

Similarly, for \(t \leq 0 \) we have

\[e^{-2t}y(t) - e^t \geq e^{-2\times 0}y(0) - e^0 = 1 \]

\[y(t) \geq e^{3t} + e^{2t}, \quad t \leq 0. \]