Random Orderings and Unique Ergodicity of Automorphism Groups

Russell Lyons
Indiana University, Bloomington
Joint work with Omer Angel and Alexander Kechris, JEMS, 2014

TAMU, College Station, TX 2015
Talk will have two parts:

- a concrete part about finite graphs
- an abstract part about automorphism groups
Special vertices?
Preserved by isomorphism and induced subgraphs?
Special vertices?
Special vertices? Preserved by **isomorphism**
Special vertices? Preserved by **isomorphism** and **induced subgraphs**?
More precisely, we allow linear (total) orderings of \(V(G) \) at random:

\[G = (V, E) \mapsto \mu_G \text{on} |V| \text{ orderings of} V \text{ that are consistent:} \]

\[\phi: G \to G' \text{ isomorphism} \Rightarrow \phi^* \mu_G = \mu_G' \]

\[\text{induced subgraph of} G \Rightarrow \mu_G \text{ induces} \mu_H \text{ by restriction} \]
More precisely, we allow linear (total) orderings of $V(G)$ at random:

$$G = (V, E) \mapsto \mu_G \text{ on } |V|! \text{ orderings of } V$$

that are consistent:

- $\phi: G \rightarrow G'$ isomorphism $\Rightarrow \phi_* \mu_G = \mu_{G'}$
More precisely, we allow linear (total) orderings of $V(G)$ at random:

$$G = (V, E) \mapsto \mu_G$$
on $|V|!$ orderings of V

that are consistent:

- $\phi: G \rightarrow G'$ isomorphism $\Rightarrow \phi_* \mu_G = \mu_{G'}$
- H induced subgraph of $G \Rightarrow \mu_G$ induces μ_H by restriction
We allow linear (total) orderings of $V(G)$ at random:

$$G = (V, E) \mapsto \mu_G \text{ on } |V|! \text{ orderings of } V$$

that are consistent:

- $\phi: G \rightarrow G'$ isomorphism $\Rightarrow \phi_* \mu_G = \mu_{G'}$
- H induced subgraph of $G \Rightarrow \mu_G$ induces μ_H by restriction
We allow linear (total) orderings of $V(G)$ at random:

$$G = (V, E) \mapsto \mu_G \text{ on } |V|! \text{ orderings of } V$$

that are consistent:

- $\phi: G \rightarrow G'$ isomorphism $\Rightarrow \phi_* \mu_G = \mu_{G'}$
- H induced subgraph of $G \Rightarrow \mu_G$ induces μ_H by restriction

It must be uniform on empty graphs.
We allow linear (total) orderings of $V(G)$ at random:

$$G = (V, E) \mapsto \mu_G \text{ on } |V|! \text{ orderings of } V$$

that are consistent:

- $\phi: G \rightarrow G'$ isomorphism $\Rightarrow \phi_* \mu_G = \mu_{G'}$
- H induced subgraph of $G \Rightarrow \mu_G$ induces μ_H by restriction

It must be uniform on complete graphs.
We allow linear (total) orderings of $V(G)$ at random:

$$G = (V, E) \mapsto \mu_G \text{ on } |V|! \text{ orderings of } V$$

that are consistent:

- $\phi: G \to G'$ isomorphism $\Rightarrow \phi_* \mu_G = \mu_{G'}$
- H induced subgraph of G $\Rightarrow \mu_G$ induces μ_H by restriction
We allow linear (total) orderings of $V(G)$ at random:

$$G = (V, E) \mapsto \mu_G \text{ on } |V|! \text{ orderings of } V$$

that are consistent:

- $\phi: G \to G'$ isomorphism $\Rightarrow \phi_* \mu_G = \mu_{G'}$
- H induced subgraph of $G \Rightarrow \mu_G$ induces μ_H by restriction

Question

The uniform ordering is always consistent. Is there any other?
We allow linear (total) orderings of $V(G)$ at random:

$$G = (V, E) \mapsto \mu_G \text{ on } |V|! \text{ orderings of } V$$

that are consistent:

- $\phi: G \rightarrow G'$ isomorphism $\Rightarrow \phi_*\mu_G = \mu_{G'}$
- H induced subgraph of $G \Rightarrow \mu_G$ induces μ_H by restriction

Question

The uniform ordering is always consistent. Is there any other?
We allow linear (total) orderings of $V(G)$ at random:

$$G = (V, E) \mapsto \mu_G$$
on $|V|!$ orderings of V

that are consistent:

- $\phi: G \rightarrow G'$ isomorphism $\Rightarrow \phi_* \mu_G = \mu_{G'}$
- H induced subgraph of G $\Rightarrow \mu_G$ induces μ_H by restriction

Question

The uniform ordering is always consistent. Is there any other?

Consider the universe only of paths.
We allow linear (total) orderings of $V(G)$ at random:

$$G = (V, E) \mapsto \mu_G \text{ on } |V|! \text{ orderings of } V$$

that are consistent:

- $\phi : G \rightarrow G'$ isomorphism $\Rightarrow \phi_* \mu_G = \mu_{G'}$
- H induced subgraph of $G \Rightarrow \mu_G$ induces μ_H by restriction

Question

The uniform ordering is always consistent. Is there any other?

Consider the universe only of paths.
Consider the universe of graphs all of whose connected components are paths.
Consider the universe of graphs all of whose connected components are paths.
Consider the universe of graphs all of whose connected components are paths.

But there is a non-uniform consistent random ordering in this universe.
Consider the universe of trees.
Consider the universe of trees.

There is a non-uniform consistent random ordering in this universe.
Consider the universe of forests.
Consider the universe of forests.

Every consistent random ordering in this universe is uniform: Balister-Bollobás-Janson (2015+).
Other structures, such as hypergraphs or metric spaces?
The answer for the universe of all finite graphs:
The answer for the universe of all finite graphs:

We prove that graphs have only the uniform ordering as a consistent ordering.

The application:

This implies that the automorphism group of “the random graph” (an infinite graph) is uniquely ergodic, i.e., every minimal action has a unique invariant probability measure.
A quantitative version:

Theorem (Angel-Kechrís-L.)

Suppose $G \mapsto \mu_G$ is a consistent ordering on graphs of size $\leq n$. Then for every H of size $k \leq n$ and for every ordering $<_H$ on $V(H)$,

$$\left| \mu_H(<_H) - \frac{1}{k!} \right| \leq C(k) \sqrt{\frac{\log n}{n}}.$$
A quantitative version:

Theorem (Angel-Kechris-L.)

Suppose $G \mapsto \mu_G$ is a consistent ordering on graphs of size $\leq n$. Then for every H of size $k \leq n$ and for every ordering $<_H$ on $V(H)$,

$$\left| \mu_H(<_H) - \frac{1}{k!} \right| \leq C(k) \sqrt{\frac{\log n}{n}}.$$

We prove this by finding, given $(H, <_H)$, a graph G of size n containing an induced copy of H such that for every $<_G$, the proportion of embeddings $\phi: H \to G$ that respect the two orders differs from $1/k!$ by the same right-hand side.
Theorem (Angel-Kecharis-L.)

Suppose $G \mapsto \mu_G$ is a consistent ordering on graphs of size $\leq n$. Then for every H of size $k \leq n$ and for every ordering $<_H$ on $V(H)$,

$$|\mu_H(<_H) - \frac{1}{k!}| \leq C(k) \sqrt{\frac{\log n}{n}}.$$

We prove this by finding, given $(H, <_H)$, a graph G of size n containing an induced copy of H such that for every $<_G$, the proportion of embeddings $\phi: H \rightarrow G$ that respect the two orders differs from $1/k!$ by the same right-hand side.

This gives the theorem as follows.
We prove this by finding, given \((H, <_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(<_G\), the proportion of embeddings \(\phi: H \to G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.

This gives the theorem as follows.
We prove this by finding, given \((H, \prec_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(\prec_G\), the proportion of embeddings \(\phi: H \rightarrow G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.

This gives the theorem as follows.

Choose \(\prec_G \sim \mu_G\) and choose a uniform random embedding \(\phi: H \rightarrow G\).
We prove this by finding, given \((H, <_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(<_G\), the proportion of embeddings \(\phi: H \rightarrow G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.

This gives the theorem as follows.

Choose \(<_G \sim \mu_G\) and choose a uniform random embedding \(\phi: H \rightarrow G\). Let \(A := \{(<_G, \phi) ; \phi \text{ respects } <_H, <_G\}\). We are assuming that
We prove this by finding, given \((H, <_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(<_G\), the proportion of embeddings \(\phi: H \rightarrow G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.

This gives the theorem as follows.

Choose \(<_G \sim \mu_G\) and choose a uniform random embedding \(\phi: H \rightarrow G\). Let \(A := \{(<_G, \phi); \phi \text{ respects } <_H, <_G\}\). We are assuming that

\[
\left| P(A | <_G) - \frac{1}{k!} \right| \leq C(k) \sqrt{\frac{\log n}{n}}
\]
We prove this by finding, given \((H, <_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(<_G\), the proportion of embeddings \(\phi: H \to G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.

This gives the theorem as follows.

Choose \(<_G \sim \mu_G\) and choose a uniform random embedding \(\phi: H \to G\). Let \(A := \{(<_G, \phi); \phi \text{ respects } <_H, <_G\}\). We are assuming that

\[
\left| \mathbb{P}(A | <_G) - \frac{1}{k!} \right| \leq C(k) \sqrt{\frac{\log n}{n}}
\]

and (by consistency)

\[
\mathbb{P}(A | \phi) = \mu_H(<_H).
\]
We prove this by finding, given \((H, <_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(<_G\), the proportion of embeddings \(\phi: H \rightarrow G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.

This gives the theorem as follows.

Choose \(<_G \sim \mu_G\) and choose a uniform random embedding \(\phi: H \rightarrow G\). Let \(A := \{(<_G, \phi); \phi \text{ respects } <_H, <_G\}\). We are assuming that

\[
\left| \mathbb{P}(A | <_G) - \frac{1}{k!} \right| \leq C(k) \sqrt{\frac{\log n}{n}}
\]

and (by consistency)

\[
\mathbb{P}(A | \phi) = \mu_H(<_H).
\]

Averaging yields

\[
\left| \mathbb{P}(A) - \frac{1}{k!} \right| \leq C(k) \sqrt{\frac{\log n}{n}}
\]
We prove this by finding, given \((H, <_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(<_G\), the proportion of embeddings \(\phi: H \rightarrow G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.

This gives the theorem as follows.

Choose \(<_G \sim \mu_G\) and choose a uniform random embedding \(\phi: H \rightarrow G\). Let \(A := \{(<_G, \phi); \phi \text{ respects } <_H, <_G\}\). We are assuming that

\[
\left| P(A | <_G) - \frac{1}{k!} \right| \leq C(k) \sqrt{\frac{\log n}{n}}
\]

and (by consistency)

\[P(A | \phi) = \mu_H(<_H). \]

Averaging yields

\[
\left| P(A) - \frac{1}{k!} \right| \leq C(k) \sqrt{\frac{\log n}{n}}
\]

and

\[P(A) = \mu_H(<_H). \]
Averaging yields

\[|P(A) - \frac{1}{k!}| \leq C(k) \sqrt{\frac{\log n}{n}} \]

and

\[P(A) = \mu_H(<_H). \]
Averaging yields

\[\left| P(A) - \frac{1}{k!} \right| \leq C(k) \sqrt{\frac{\log n}{n}} \]

and

\[P(A) = \mu_H(<_H). \]

Theorem (Angel-Kechris-L.)

Suppose \(G \mapsto \mu_G \) is a consistent ordering on graphs of size \(\leq n \). Then for every \(H \) of size \(k \leq n \) and for every ordering \(<_H \) on \(V(H) \),

\[\left| \mu_H(<_H) - \frac{1}{k!} \right| \leq C(k) \sqrt{\frac{\log n}{n}}. \]
We prove this by finding, given \((H, \prec_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(\prec_G\), the proportion of embeddings \(\phi: H \to G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.
We prove this by finding, given \((H, <_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(<_G\), the proportion of embeddings \(\phi: H \to G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.

Proof.

To find \(G\), we choose it at random among all \(n\)-vertex graphs (the Erdős-Rényi model).
We prove this by finding, given \((H, \prec_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(\prec_G\), the proportion of embeddings \(\phi: H \to G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.

Proof.

To find \(G\), we choose it at random among all \(n\)-vertex graphs (the Erdős-Rényi model). The number of embeddings is very concentrated about its expectation.
We prove this by finding, given \((H, \prec_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(\prec_G\), the proportion of embeddings \(\phi: H \rightarrow G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.

Proof.

To find \(G\), we choose it at random among all \(n\)-vertex graphs (the Erdős-Rényi model). The number of embeddings is very concentrated about its expectation. Given \(\prec_H\) and \(\prec_G\), the number of order-preserving embeddings is also very concentrated about its expectation.
We prove this by finding, given \((H, \prec_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(\prec_G\), the proportion of embeddings \(\phi: H \to G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.

Proof.

To find \(G\), we choose it at random among all \(n\)-vertex graphs (the Erdős-Rényi model). The number of embeddings is very concentrated about its expectation. Given \(\prec_H\) and \(\prec_G\), the number of order-preserving embeddings is also very concentrated about its expectation. The ratio of these expectations is exactly \(1/k!\).
We prove this by finding, given \((H, <_H)\), a graph \(G\) of size \(n\) containing an induced copy of \(H\) such that for every \(<_G\), the proportion of embeddings \(\phi: H \to G\) that respect the two orders differs from \(1/k!\) by the same right-hand side.

Proof.

To find \(G\), we choose it at random among all \(n\)-vertex graphs (the Erdős-Rényi model). The number of embeddings is very concentrated about its expectation. Given \(<_H\) and \(<_G\), the number of order-preserving embeddings is also very concentrated about its expectation. The ratio of these expectations is exactly \(1/k!\). Now take the union bound over all \(n!\) orderings \(<_G\).
Theorem (Angel-Kechris-L.)

Suppose $G \mapsto \mu_G$ is a consistent ordering on graphs of size $\leq n$. Then for every H of size $k \leq n$ and for every ordering $<_H$ on $V(H)$,

$$\left| \mu_H(<_H) - \frac{1}{k!} \right| \leq C(k) \sqrt{\frac{\log n}{n}}.$$

We don’t know how sharp our upper bound is.
Theorem (Angel-Kechris-L.)

Suppose $G \mapsto \mu_G$ is a consistent ordering on graphs of size $\leq n$. Then for every H of size $k \leq n$ and for every ordering $<_H$ on $V(H)$,

$$\left| \mu_H(<_H) - \frac{1}{k!} \right| \leq C(k) \sqrt{\frac{\log n}{n}}.$$

We don’t know how sharp our upper bound is. We have a lower bound that there is a consistent assignment $G \mapsto \mu_G$ on graphs of size $\leq n$ such that for all $k \in [3, n]$ there is some H of size k and some $<_H$ with

$$\left| \mu_H(<_H) - \frac{1}{k!} \right| \geq \frac{c(k)}{n}.$$
Theorem (Angel-Kechris-L.)

The only consistent ordering on finite graphs is the uniform random ordering.
The only consistent ordering on finite graphs is the uniform random ordering.

Let Γ be a topological group and X be a compact Hausdorff space. Suppose that Γ acts continuously by homeomorphisms on X (X is a Γ-flow).

What can we say about Γ-invariant Borel probability measures on X? A measure μ on X is Γ-invariant if $\mu(\gamma A) = \mu(A)$ for all Borel $A \subseteq X$ and all $\gamma \in \Gamma$.
Theorem (Angel-Kechris-L.)

The only consistent ordering on finite graphs is the uniform random ordering.

Let Γ be a topological group and X be a compact Hausdorff space. Suppose that Γ acts continuously by homeomorphisms on X (X is a Γ-flow).

What can we say about Γ-invariant Borel probability measures on X? A measure μ on X is Γ-invariant if $\mu(\gamma A) = \mu(A)$ for all Borel $A \subseteq X$ and all $\gamma \in \Gamma$. We say that Γ is amenable if for all such X there exists an invariant measure.
Application

Theorem (Angel-Kechris-L.)

The only consistent ordering on finite graphs is the uniform random ordering.

Let Γ be a topological group and X be a compact Hausdorff space. Suppose that Γ acts continuously by homeomorphisms on X (X is a Γ-flow).

What can we say about Γ-invariant Borel probability measures on X? A measure μ on X is Γ-invariant if $\mu(\gamma A) = \mu(A)$ for all Borel $A \subseteq X$ and all $\gamma \in \Gamma$. We say that Γ is amenable if for all such X there exists an invariant measure.

Suppose from now on that Γ is amenable. When is an invariant measure also unique? If X decomposes into invariant compact pieces, then it will not be unique. What if X is minimal, i.e., every Γ-orbit is dense?
Examples

Assumptions:

- X is a Γ-flow;
- Γ is amenable;
- X is minimal, i.e., every Γ-orbit is dense.

Examples:
Assumptions:

- X is a Γ-flow;
- Γ is amenable;
- X is minimal, i.e., every Γ-orbit is dense.

Examples:

- Suppose Γ is compact. Then the invariant measure is unique.
Assumptions:

- X is a Γ-flow;
- Γ is amenable;
- X is minimal, i.e., every Γ-orbit is dense.

Examples:

- Suppose Γ is compact. Then the invariant measure is unique.
- Suppose that $\Gamma = \mathbb{Z}$ acting by irrational rotation on the circle, $(n, x) \mapsto x + n\alpha \pmod{1}$. Then the invariant measure is unique. But there are minimal \mathbb{Z}-flows that have more than one invariant measure.
Assumptions:

- X is a Γ-flow;
- Γ is amenable;
- X is minimal, i.e., every Γ-orbit is dense.

Examples:

- Suppose Γ is compact. Then the invariant measure is unique.
- Suppose that $\Gamma = \mathbb{Z}$ acting by irrational rotation on the circle, $(n, x) \mapsto x + n\alpha \pmod{1}$. Then the invariant measure is unique. But there are minimal \mathbb{Z}-flows that have more than one invariant measure.
- In fact, every countable infinite Γ has a minimal flow that has more than one invariant measure, i.e., is not uniquely ergodic.
Application

- X is a Γ-flow;
- Γ is amenable;
- X is minimal, i.e., every Γ-orbit is dense.

We say X is **uniquely ergodic** if it has a unique Γ-invariant measure.
Application

- X is a Γ-flow;
- Γ is amenable;
- X is minimal, i.e., every Γ-orbit is dense.

We say X is **uniquely ergodic** if it has a unique Γ-invariant measure.

When is every minimal Γ-flow uniquely ergodic (as when Γ is compact, but not when Γ is countably infinite)?
- X is a Γ-flow;
- Γ is amenable;
- X is minimal, i.e., every Γ-orbit is dense.

We say X is **uniquely ergodic** if it has a unique Γ-invariant measure.

When is every minimal Γ-flow uniquely ergodic (as when Γ is compact, but not when Γ is countably infinite)?

We need consider only one Γ-flow, the **universal minimal Γ-flow**, $M(\Gamma)$. Every minimal Γ-flow is a Γ-factor of $M(\Gamma)$ (i.e., there is a continuous surjection $\phi: M(\Gamma) \rightarrow X$ that commutes with the Γ-actions).
Application

- X is a Γ-flow;
- Γ is amenable;
- X is minimal, i.e., every Γ-orbit is dense.

We say X is uniquely ergodic if it has a unique Γ-invariant measure.

When is every minimal Γ-flow uniquely ergodic (as when Γ is compact, but not when Γ is countably infinite)?

We need consider only one Γ-flow, the universal minimal Γ-flow, $M(\Gamma)$. Every minimal Γ-flow is a Γ-factor of $M(\Gamma)$ (i.e., there is a continuous surjection $\phi : M(\Gamma) \to X$ that commutes with the Γ-actions). If Γ is compact, then $M(\Gamma) = \Gamma$.

If Γ is locally compact but not compact, $M(\Gamma)$ is uniquely ergodic iff every minimal Γ-flow is uniquely ergodic, in which case we call Γ itself uniquely ergodic.
• X is a Γ-flow;
• Γ is amenable;
• X is minimal, i.e., every Γ-orbit is dense.

We say X is **uniquely ergodic** if it has a unique Γ-invariant measure.

When is every minimal Γ-flow uniquely ergodic (as when Γ is compact, but not when Γ is countably infinite)?

We need consider only one Γ-flow, the **universal minimal Γ-flow**, $M(\Gamma)$. Every minimal Γ-flow is a Γ-factor of $M(\Gamma)$ (i.e., there is a continuous surjection $\phi: M(\Gamma) \to X$ that commutes with the Γ-actions). If Γ is compact, then $M(\Gamma) = \Gamma$.

$M(\Gamma)$ is uniquely ergodic iff every minimal Γ-flow is uniquely ergodic, in which case we call Γ itself **uniquely ergodic**.
Application

- X is a Γ-flow;
- Γ is amenable;
- X is minimal, i.e., every Γ-orbit is dense.

We say X is **uniquely ergodic** if it has a unique Γ-invariant measure.

When is every minimal Γ-flow uniquely ergodic (as when Γ is compact, but not when Γ is countably infinite)?

We need consider only one Γ-flow, the **universal minimal Γ-flow**, $M(\Gamma)$. Every minimal Γ-flow is a Γ-factor of $M(\Gamma)$ (i.e., there is a continuous surjection $\phi: M(\Gamma) \rightarrow X$ that commutes with the Γ-actions). If Γ is compact, then $M(\Gamma) = \Gamma$.

$M(\Gamma)$ is uniquely ergodic iff every minimal Γ-flow is uniquely ergodic, in which case we call Γ itself **uniquely ergodic**.

[These universal flows are not metrizable when Γ is locally compact but not compact.]
We say Γ is uniquely ergodic if every minimal Γ-flow is unique ergodic; equivalently, if $M(\Gamma)$ is uniquely ergodic.

Examples:
We say Γ is **uniquely ergodic** if every minimal Γ-flow is unique ergodic; equivalently, if $M(\Gamma)$ is uniquely ergodic.

Examples:

Let S_∞ be the group of *all* permutations of \mathbb{N}, with the pointwise convergence topology. Glasner-Weiss (2002) showed that

$$M(S_\infty) = \{\text{all linear orders of } \mathbb{N}\},$$

This was the first example of a uniquely ergodic group other than groups that are compact or extremely amenable (i.e., every Γ-flow has a fixed point).

(The first natural example of an extremely amenable group is due to Gromov-Milman (1983): $U(\ell^2(\mathbb{N}))$.)

Kechris-Pestov-Todorcevic (2005) gave many more examples of universal minimal flows for closed subgroups of S_∞, showing how this is related to model theory and Ramsey theory.
We say Γ is **uniquely ergodic** if every minimal Γ-flow is unique ergodic; equivalently, if $M(\Gamma)$ is uniquely ergodic.

Examples:

Let S_∞ be the group of *all* permutations of \mathbb{N}, with the pointwise convergence topology. Glasner-Weiss (2002) showed that

$$M(S_\infty) = \{\text{all linear orders of } \mathbb{N}\} ,$$

whence S_∞ is uniquely ergodic.
We say Γ is uniquely ergodic if every minimal Γ-flow is unique ergodic; equivalently, if $M(\Gamma)$ is uniquely ergodic.

Examples:

Let S_∞ be the group of all permutations of \mathbb{N}, with the pointwise convergence topology. Glasner-Weiss (2002) showed that

$$M(S_\infty) = \{\text{all linear orders of } \mathbb{N}\},$$

whence S_∞ is uniquely ergodic. This was the first example of a uniquely ergodic group other than groups that are compact or extremely amenable (i.e., every Γ-flow has a fixed point).
We say \(\Gamma \) is **uniquely ergodic** if every minimal \(\Gamma \)-flow is unique ergodic; equivalently, if \(M(\Gamma) \) is uniquely ergodic.

Examples:

Let \(S_\infty \) be the group of all permutations of \(\mathbb{N} \), with the pointwise convergence topology. Glasner-Weiss (2002) showed that

\[
M(S_\infty) = \{ \text{all linear orders of } \mathbb{N} \},
\]

whence \(S_\infty \) is uniquely ergodic. This was the first example of a uniquely ergodic group other than groups that are compact or \textit{extremely amenable} (i.e., every \(\Gamma \)-flow has a fixed point). (The first natural example of an extremely amenable group is due to Gromov-Milman (1983): \(U(\ell^2(\mathbb{N})) \).)
We say Γ is uniquely ergodic if every minimal Γ-flow is unique ergodic; equivalently, if $M(\Gamma)$ is uniquely ergodic.

Examples:

Let S_∞ be the group of all permutations of \mathbb{N}, with the pointwise convergence topology. Glasner-Weiss (2002) showed that

$$M(S_\infty) = \{\text{all linear orders of } \mathbb{N}\},$$

whence S_∞ is uniquely ergodic. This was the first example of a uniquely ergodic group other than groups that are compact or extremely amenable (i.e., every Γ-flow has a fixed point). (The first natural example of an extremely amenable group is due to Gromov-Milman (1983): $U(\ell^2(\mathbb{N}))$.)

Kechris-Pestov-Todorcevic (2005) gave many more examples of universal minimal flows for closed subgroups of S_∞, showing how this is related to model theory and Ramsey theory.
For example, let R be the random graph, i.e., the graph on \mathbb{N} that is equal a.s. to the Erdős-Rényi random graph on \mathbb{N}.
For example, let \mathcal{R} be the random graph, i.e., the graph on \mathbb{N} that is equal a.s. to the Erdős-Rényi random graph on \mathbb{N}. Then Kechris-Pestov-Todorcevic showed that

$$M(\text{Aut}(\mathcal{R})) = M(S_\infty) = \{\text{all linear orders of } \mathbb{N}\}.$$

This does not immediately give that Aut(\mathcal{R}) is uniquely ergodic.
For example, let \mathcal{R} be the random graph, i.e., the graph on \mathbb{N} that is equal a.s. to the Erdős-Rényi random graph on \mathbb{N}. Then Kechriss-Pestov-Todorcevic showed that

$$M(\text{Aut}(\mathcal{R})) = M(S_\infty) = \{\text{all linear orders of } \mathbb{N}\}. $$

This does not immediately give that $\text{Aut}(\mathcal{R})$ is uniquely ergodic. In fact, that translates precisely to our theorem on uniqueness of consistent random orderings of finite graphs.
For example, let \mathcal{R} be the random graph, i.e., the graph on \mathbb{N} that is equal a.s. to the Erdős-Rényi random graph on \mathbb{N}. Then Kečrjs-Pestov-Todorcevic showed that

$$M(\text{Aut}(\mathcal{R})) = M(S_\infty) = \{\text{all linear orders of } \mathbb{N}\}.$$

This does not immediately give that $\text{Aut}(\mathcal{R})$ is uniquely ergodic. In fact, that translates precisely to our theorem on uniqueness of consistent random orderings of finite graphs.

This example and others we give are the next examples of non-compact non-extremely-amenable uniquely ergodic groups.
For metric spaces, it is also true that only the uniform ordering is consistent.
For metric spaces, it is also true that only the uniform ordering is consistent. To prove this along similar lines, given a metric space X of size k, find a k-uniform hypergraph with $k^{1+\epsilon}$ hyperedges of large girth
For metric spaces, it is also true that only the uniform ordering is consistent. To prove this along similar lines, given a metric space X of size k, find a k-uniform hypergraph with $k^{1+\epsilon}$ hyperedges of large girth and consider random identifications of the hyperedges with X to put a metric on the hyperedges.
For metric spaces, it is also true that only the uniform ordering is consistent. To prove this along similar lines, given a metric space X of size k, find a k-uniform hypergraph with $k^{1+\epsilon}$ hyperedges of large girth and consider random identifications of the hyperedges with X to put a metric on the hyperedges. Extend to a shortest-path metric on the whole hypergraph.
For metric spaces, it is also true that only the uniform ordering is consistent. To prove this along similar lines, given a metric space X of size k, find a k-uniform hypergraph with $k^{1+\epsilon}$ hyperedges of large girth and consider random identifications of the hyperedges with X to put a metric on the hyperedges. Extend to a shortest-path metric on the whole hypergraph. The number of embeddings of X into hyperedges that preserve two given orders is concentrated.
For graphs, the Ramsey property is the following theorem of Nešetřil and Rödl (1977): Consider only ordered graphs and $q \geq 1$. Suppose that K is an induced subgraph of H. Then there is a graph G containing an induced subgraph isomorphic to H such that for any coloring $c : \binom{G}{K} \to \{1, \ldots, q\}$, there is $H' \in \binom{G}{H}$ such that $c|_{\binom{H'}{K}}$ is constant.

(When all graphs are empty, this is the classical theorem of Ramsey: [Equation])
For graphs, the Ramsey property is the following theorem of Nešetřil and Rödl (1977): Consider only ordered graphs and $q \geq 1$. Suppose that K is an induced subgraph of H. Then there is a graph G containing an induced subgraph isomorphic to H such that for any coloring $c: \binom{G}{K} \to \{1, \ldots, q\}$, there is $H' \in \binom{G}{H}$ such that $c\upharpoonright \binom{H'}{K}$ is constant.

(When all graphs are empty, this is the classical theorem of Ramsey: If $k < h$, then there is g sufficiently large such that for any coloring $c: \binom{[g]}{k} \to \{1, \ldots, q\}$, there is $H' \in \binom{[g]}{h}$ such that $c\upharpoonright \binom{H'}{k}$ is constant.)