How \(F \) Relates to \(t \)

Since the \(t \)-test is more intuitive than the \(F \)-test, it may help to see what the relationship is between the two tests. First, suppose we do the \(F \)-test with \(p_0 = 1 \). Then both tests are testing whether \(\beta_p = 0 \) (we are taking the last column, \(X^{[p]} \), for convenience as the one we are testing), so they have the very same null hypothesis. Let \(W_{p-1} \) denote the column space of the first \(p - 1 \) columns of \(X \). Define \(Z := X^{[p]} - P_{W_{p-1}}X^{[p]} \) to be the part of \(X^{[p]} \) that is orthogonal to \(W_{p-1} \). Then

\[
\hat{Y} = X\hat{\beta} = \sum_{k=1}^{p-1} X^{[k]}\hat{\beta}_k + X^{[p]}\hat{\beta}_p = \sum_{k=1}^{p-1} X^{[k]}\hat{\beta}_k + \left(P_{W_{p-1}}X^{[p]} + Z\right)\hat{\beta}_p = \hat{Y}(s) + Z\hat{\beta}_p \tag{1}
\]

since all terms but the last belong to \(W_{p-1} \) and the last term is \(\perp W_{p-1} \). Equation (1) shows that the numerator of \(F \) is \(\|\hat{Y}\|^2 - \|\hat{Y}(s)\|^2 = \|Z\hat{\beta}_p\|^2 = \|Z\|^2\hat{\beta}_p^2 \), whence \(F = \|Z\|^2\hat{\beta}_p^2 / \hat{\sigma}^2 \).

Equation (1) also shows that \(\hat{\beta}_p \) is the same for \(X \) as for the matrix \(V \) all of whose columns are the same as those of \(X \) except for the last one, which is changed to \(Z \). You should check that since \(Z \) is orthogonal to the other columns of \(V \), we have that all the entries of the last row and column of \(V'V \) are 0 except for the \((p, p)\)-entry, and that entry is \(\|Z\|^2 \).

You should also check that this means that the \((p, p)\)-entry of \((V'V)^{-1}\) is \(1/\|Z\|^2 \). Thus, we deduce that the SE of \(\hat{\beta}_p \) is \(\sigma^2/\|Z\|^2 \). This shows that \(t = \hat{\beta}_p / (\hat{\sigma}/\|Z\|) = \hat{\beta}_p\|Z\|/\hat{\sigma} \).

Therefore, \(F = t^2 \).

That was for \(p_0 = 1 \). Now we derive a formula relating \(F \) to several \(t \)-statistics when \(p_0 > 1 \). Write \(\hat{Y}(s,k) \) for the fitted value of \(Y \) in the small model consisting of the first \(k \) columns of \(X \). In this notation, \(Y(s) = Y(s,p_0) \). Then we have a telescoping sum for the numerator of the numerator of \(F \):

\[
\|\hat{Y}\|^2 - \|\hat{Y}(s)\|^2 = \left(\|\hat{Y}\|^2 - \|\hat{Y}(s,p-1)\|^2\right) + \left(\|\hat{Y}(s,p-1)\|^2 - \|\hat{Y}(s,p-2)\|^2\right) + \left(\|\hat{Y}(s,p-2)\|^2 - \|\hat{Y}(s,p-3)\|^2\right) + \ldots + \left(\|\hat{Y}(s,p-p_0+1)\|^2 - \|\hat{Y}(s)\|^2\right).
\]

Each of these terms can be treated as above where we had \(p_0 = 1 \). However, since we are using \(\|e\| \) from the big model in the denominator of \(F \), i.e., we are estimating \(\sigma \) from the big model (which makes sense since it gives us the most information about \(\sigma \)), the terms don’t quite match those of the squares of the corresponding \(t \)-statistics, which are from various smaller models. But it makes sense to consider modified \(t \)-statistics, where we use the same \(\hat{\sigma} \) always. Thus, let \(t(s,k) := \hat{\beta}_{k}^{(s,k)}/\sqrt{\hat{\sigma}E_k} \), where the numerator is the estimated coefficient of \(X^{[k]} \) in the model from the first \(k \) columns of \(X \) and the denominator is the estimated SE of the numerator, using our fixed \(\hat{\sigma} = \|e\|/\sqrt{n-p} \). This gives \(F = (1/p_0) \sum_{k=p-p_0+1}^{p} t^2(s,k) \).

Thus, \(F \) is an average of modified \(t \)-statistics. It is possible to rederive the distribution of \(F \) from this formula.