Errata to
High-Precision Entropy Values for Spanning Trees in Lattices

by JESSICA L. FELKER AND RUSSELL LYONS

The formula

\[h_{d}^{bcc} = d \log 2 - \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k} p_{1}(k)^{d} \]

should be

\[h_{d}^{bcc} = d \log 2 - \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k} p_{1}(2k)^{d} \]

The upper bounds

\[1.9901914178466 \leq h_{3}^{bcc} \leq 1.9901914178472 \]
\[2.732957535468933 \leq h_{4}^{bcc} \leq 2.7329575354689455 \]

are not correct. S.-C. Chang and R. Shrock, “Some exact results for spanning trees on lattices”, J. Phys. A 39 (2006), no. 20, 5653–5658, gave an expression for these constants in terms of hypergeometric functions, which permit fast evaluation. They gave 15 digits for these two constants, showing that they lie above the upper bounds given here. Fifty digits are given by A.J. Guttmann and M.D. Rogers, “Spanning tree generating functions and Mahler measures”, \texttt{http://arxiv.org/abs/1207.2815}, who noted the conflict with our bounds. Apparently, we made a slight error somewhere in our calculations, as our methods are correct.