Noah Snyder: Teaching Statement

I have long enjoyed teaching and have taught in a wide variety of different contexts over the past dozen years. At the university level I’ve taught Calculus, an upper level undergraduate class, and a sophomore tutorial. In addition, I have extensive experience teaching advanced high school students at summer programs. Beyond a general interest in teaching, I have strong particular interests in curriculum development, in discovery-based teaching techniques, in graduate level seminars, and in education for gifted students.

TEACHING EXPERIENCE

Teaching at Columbia. I am currently teaching an undergraduate class on representations of finite groups at Columbia. Columbia has no set curriculum for their classes, so teaching this class required deciding which material to cover, preparing lectures, writing homeworks, and writing exams. One of my recommenders, Pat Gallagher, visited this class and has written about my teaching in this context.

Teaching at Berkeley. At U.C. Berkeley in 2004 I taught two sections of first-semester calculus for engineering students and two sections of second-semester calculus for engineering students. These sections met for 3 hours per week and complemented 3 hours of large lectures by a senior professor. For the first of these classes I was responsible for writing quizzes, structuring classroom time, and choosing worksheets. For both of these classes I was popular with the students. For the first class, where I had the flexibility to organize my own classes, 18 out of 40 students rated my teaching as 7 out of 7. My average rating as a teacher were 6.1, 6.0, 5.9, and 5.8 respectively. The overall scores for the sections were 5.8, 5.7, 5.9, and 5.0.

One student in my calculus class wrote:

“He has a great talent for explaining even difficult subjects in a clear elucidating fashion. He also has an infectious enthusiasm for the subject that encourages students to learn.”

Another said,

“[He] keeps individual track of students progress including those who are doing poorly (and approaches them).”

Teaching at Canada/USA Mathcamp. In terms of number of classes, most of my recent teaching has been at the Canada/USA Mathcamp, a summer program for exceptionally talented teenagers. As a mentor my job included developing new classes, writing problem sets, teaching classes, giving colloquia, advising students, observing new mentors, and supervising student research projects. The hiring process for mentors is very competitive—roughly three in four applicants are rejected—and of the new hires, roughly half are granted tenured status and asked to return. I’ve taught a variety of classes on number theory, topology and algebra. In 2008, my 12-hour, 5-day class on planar algebras was one of the most popular classes with a 6.48 out of 7. In 2009 I was the Academic Coordinator at Mathcamp, which involved running the hiring process, deciding who would teach which courses, making a schedule that minimized conflicts, and supervising the mentoring of new hires. Thus, in addition
my own teaching experience, I have experience evaluating the teaching of others and running hiring committees.

Curriculum development

The most exciting part of teaching for me is developing new curricula and new ways of making math exciting. Creatively thinking about structuring a class so that one can reach deep and beautiful results without relying on excessive prerequisites is a great joy. I developed and taught a sophomore tutorial at Harvard on “L-functions and ζ-functions” based on material from my undergraduate thesis. At Mathcamp I’ve developed classes on unique factorization, number theory of polynomials, basic category theory, and planar algebras. I’ve also developed for mathcamp a longer discovery-based curriculum called “Rational numbers... in space!” proving results in diophantine approximation using elementary geometry of the plane. At Berkeley I organized a semester long seminar on topological invariants and quantum algebra, tying together many introductory results in quantum algebra and quantum topology into a coherent thread. These experiences will be useful at the university level in developing new general interest freshman seminars, higher level seminars for math majors, graduate seminars and topics courses.

Discovery-based teaching

Ever since I was a student at the Ross summer math program in 1996, I’ve been interested in discovery-based teaching techniques. The Ross program is centered around long daily problem sets that students solve largely on their own. Counselors are there to listen and occasionally give a hint, but by cleverly breaking up the problems into bite-sized chunks, most students can discover key ideas themselves. This leads to better mathematical maturity, teaches students about the research process, and results in better long-term retention of the material. I worked as a counselor at Ross for 4 years, taught a thrice-weekly seminar there, and worked rewriting and editing the problem sets in 2002.

Since then, I’ve used this experience with exploration-based teaching in other settings. At U.C. Berkeley for one semester I incorporated the Berkeley worksheet system, in which students are given problems that they work on in small groups at the board. The teacher must constantly scan the room keeping all groups moving and interested, while not giving so much of a hint as to spoil the problems.

I’ve used a hybrid of the Ross approach and the Berkeley worksheet system in two classes at Mathcamp. Much of the work was done by students outside of class, but in class they would break up into small groups and continue working, with occasional prodding from me. At Mathcamp, I have also taught a class using the Moore method. This is similar to the above techniques in that the students are given bite-sized lemmas leading up to theorems to work on outside of class, but differs in that in class students present their solutions at the board. When this system works, the students find each others’ mistakes. To promote this behavior the teacher must be patient, but intervene when necessary to keep discussion moving in a positive direction.

I plan to continue incorporating discovery-based techniques drawn from the Ross program, the Berkeley worksheets, and the Moore method into some of the classes that I teach in the future.
Graduate Seminars

At Berkeley, I had extensive experience organizing graduate student seminars and teaching in a wide variety of graduate seminars. These seminars were instrumental to my experience as a graduate student, and I plan to continue organizing graduate seminars in the future. I organized my own seminar on “Topological Invariants and Quantum Algebra,” where I chose the topic, gave half of the talks, and recruited speakers for the other talks. I also co-organized the student representation theory seminar. I gave over 30 talks in half a dozen different seminars on topics ranging from number theory to operator algebras, to representation theory, to topology.