Early exposure to technology is critical for educating children to lead productive lives (Computers). Schools are particularly well suited to introduce children to computer experience (Computers). Although schools give greater access to computers than in the past, they are not frequently used in the curricula of the class (Computers). Most classroom use of computers was limited to word processing followed by research on databases (Computers).

School computers are also frequently out of date, the rapid pace of technological growth has made computer inventories increasingly outdated, with many computers close to five years out of date (Computers). By the time schools receive funding for proposed computer systems, those systems will most likely already be outdated. Another issue that arises is that schools frequently had very limited internet connections (Computers). Many of these factors combine to limit the amount of computer usage in schools and universities.

The quality of our schools technological education has a large impact on what degree programs a student will choose (STEM). Students who graduated from STEM high schools chose stem degree programs at more that twice the national rate, 64.9 to 30 percent (STEM). Students who were given the opportunity to do scientific investigations and engineering projects were 1.77 times more likely to pursue stem degree programs and careers (STEM).

By spreading out the amount of computer systems available and making an online resource that allows people to reserve and see available computers, we could essentially encourage a better learning environment. Having a mixed size of labs that cater to classes and individuals will also enhance the efficiency and quality of use that the computers get. Sometimes properly managing a resource can prevent the need for more resources and this philosophy can be applied to computer systems as well.

The way a computer lab is set up has a large impact on the way the it gets used. “The design and layout of a computer lab creates rules and defines how the lab can be used” which guides the learning
process for each student (Garger). Knowing which layouts work best for a classroom is important for maximizing the efficiency of computing resources.

One of the most basic but effective setups for a computer lab puts all computer stations facing the same direction in a grid fashion. This is good for lessons where students should be following the teacher and working alone. Another good layout is where the stations are set in a U with students facing out. This type of layout is good for classes that, "encourage[s] engagement between instructors and students" (Garger).

IU has actually had to deal with these problems and with further research, they have actually handled it in much of the way we have proposed. IU refers to their computer labs as student technology centers or STC’s for short. They also have labs in their dorms which they refer to as residential technology centers or RTC’s. There are relatively 60 combined STC’s and RTC’s on the Indiana University Bloomington campus. Not each of these technology centers contain all computer resources, but the resources are put in certain labs based on need.

Based on the seven person survey taken, all seven replied that they were either pleased or unaffected by the availability of the IU computer labs. Only one person stated that they used the IU computers on a frequent basis whereas everyone else only used them occasionally or rarely. This information goes to show us that most IU students possess their own computer and aren’t in dire need of a computer lab except for classroom situations. The link for the study results can be found below.

Works Cited


http://eds.b.ebscohost.com/ehost/detail/detail?vid=26&sid=f36f9826-9415-4ae4-8764-70fc46aa2c1e%40sessionmgr120&hid=121&bdata=JnNpdGU9ZWhvc3QtbGl2ZSZhY29wZT1zaXRl#AN=100106702&db=aph


Austin J. Hanebutt, Survey Monkey Study Results: https://www.surveymonkey.com/results/SM-WWYK8N6C/