Data Reduction

Any statistic \(T(X) \) defines a form of data reduction.

Motivation: If you use \(T(X) \) rather than \(X \), you'll treat \(X \) and \(Y \) as equal if \(T(X) = T(Y) \).

Sufficient: \(X_1, \ldots, X_n \sim f(x \mid \theta) \)

A sufficient statistic \(T(X) \) for a parameter \(\theta \) captures all the information about \(\theta \).

Formally: \(T(X) \) is sufficient for \(\theta \) (or for the family \(f = \{f(x \mid \theta) : \theta \in \Theta \} \)) if the conditional distribution of \(X_1, \ldots, X_n \) given \(T(X) \) is free of \(\theta \).

\[
\frac{f(x \mid T(X) = T(x))}{f_T(T(X) = T(x))} = \frac{f(x, T(X) = T(x))}{f_T(T(X) = T(x) \mid \theta)} = \frac{f(x \mid \theta)}{f_T(T(X) = T(x) \mid \theta)}
\]

We need:
1. Joint pmf/pdf of the sample
2. Distribution of the statistic

If \(T(X) \) is suff., \(\rightarrow \) LHS is free of \(\theta \), say \(h(x) \), then

\[
h(x) = \frac{f(x \mid \theta)}{f_T(T(X) = T(x) \mid \theta)} \rightarrow \frac{f(x \mid \theta)}{f_T(T(X) = T(x) \mid \theta) h(x)}
\]

\(\rightarrow \) **Fisher-Neyman Factorization Thm.** \(T(X) \) is suff. for \(\theta \) iff

\[
f(x \mid \theta) = g(T(X) \mid \theta) \cdot h(x)
\]

(\(f(x \mid \theta) \) can be expressed in terms of functions \(g \) and \(h \)).