A Strong Künneth Theorem for Periodic Topological Cyclic Homology

Michael A. Mandell

Indiana University

Shanks Workshop on Homotopy Theory

Vanderbilt University

March 25, 2017
A Strong Künneth Theorem for Topological Periodic Cyclic Homology

Michael A. Mandell
Indiana University

Shanks Workshop on Homotopy Theory
Vanderbilt University

March 25, 2017
Topological periodic cyclic homology (TP) is the analogue of periodic cyclic homology (HP) using THH in place of HH. If k is a finite field, then smooth and proper d.g. categories over k satisfy a strong Künneth theorem:

$$TP(X) \wedge_{TP(k)}^L TP(Y) \to TP(X \otimes_k Y)$$

is an isomorphism in the derived category of $TP(k)$-modules.

- Joint work with Andrew Blumberg
- Preprint Soon
Overview

Topological periodic cyclic homology \((TP)\) is the analogue of periodic cyclic homology \((HP)\) using \(THH\) in place of \(HH\). If \(k\) is a finite field, then smooth and proper varieties over \(k\) satisfy a strong Künneth theorem:

\[
TP(X) \wedge_{TP(k)}^L TP(Y) \rightarrow TP(X \otimes_k Y)
\]

is an isomorphism in the derived category of \(TP(k)\)-modules.

- Joint work with Andrew Blumberg
- Preprint Soon
Topological periodic cyclic homology (TP) is the analogue of periodic cyclic homology (HP) using THH in place of HH. If k is a finite field, then smooth and proper d.g. algebras over k satisfy a strong Künneth theorem:

$$TP(X) \wedge_{TP(k)}^L TP(Y) \rightarrow TP(X \otimes_k Y)$$

is an isomorphism in the derived category of $TP(k)$-modules.

- Joint work with Andrew Blumberg
- Preprint Soon
Overview

Topological periodic cyclic homology (TP) is the analogue of periodic cyclic homology (HP) using THH in place of HH. If k is a finite field, then smooth and proper d.g. algebras over k satisfy a strong Künneth theorem:

$$TP(X) \wedge_{TP(k)}^L TP(Y) \rightarrow TP(X \otimes_k Y)$$

is an isomorphism in the derived category of $TP(k)$-modules.

- Joint work with Andrew Blumberg
- Preprint Soon

Outline
Topological periodic cyclic homology (TP) is the analogue of periodic cyclic homology (HP) using THH in place of HH. If k is a finite field, then smooth and proper d.g. algebras over k satisfy a strong Künneth theorem:

$$TP(X) \wedge_{TP(k)}^L TP(Y) \to TP(X \otimes_k Y)$$

is an isomorphism in the derived category of $TP(k)$-modules.

- Joint work with Andrew Blumberg
- Preprint Soon

Outline

1. Introduction to TP
Topological periodic cyclic homology (TP) is the analogue of periodic cyclic homology (HP) using THH in place of HH. If k is a finite field, then smooth and proper d.g. algebras over k satisfy a strong Künneth theorem:

$$TP(X) \wedge_{TP(k)}^L TP(Y) \to TP(X \otimes_k Y)$$

is an isomorphism in the derived category of $TP(k)$-modules.

- Joint work with Andrew Blumberg
- Preprint Soon

Outline

1. Introduction to TP
2. Structure and properties of TP
Topological periodic cyclic homology (TP) is the analogue of periodic cyclic homology (HP) using THH in place of HH. If \(k \) is a finite field, then smooth and proper d.g. algebras over \(k \) satisfy a strong Künneth theorem:

\[
TP(X) \wedge_{TP(k)}^L TP(Y) \to TP(X \otimes_k Y)
\]

is an isomorphism in the derived category of \(TP(k) \)-modules.

- Joint work with Andrew Blumberg
- Preprint Soon

Outline
1. Introduction to \(TP \)
2. Structure and properties of \(TP \)
3. The Künneth theorem
Hochschild Homology

Cyclic bar construction

\[N^c_y R = \underbrace{R \otimes \cdots \otimes R \otimes R}_{q \text{ factors}} \]

Chain complex

Cyclic structure \(\longrightarrow \) Connes’ \(B \) operator

\[B : N^c_y R \rightarrow N^c_y R[-1] \]
Hochschild Homology

Cyclic bar construction

\[N^c_R = R \otimes \cdots \otimes R \otimes R \]

\(q \) factors

Chain complex

Cyclic structure \(\implies \) Connes' \(B \) operator

\[B : N^c_R \rightarrow N^c_R[-1] \]
Hochschild Homology

Cyclic bar construction

\[N_q^{cy} R = \underbrace{R \otimes \cdots \otimes R \otimes R}_{q \text{ factors}} \]

Chain complex

Cyclic structure \(\Rightarrow\) Connes’ \(B\) operator

\[B : N^{cy} R \to N^{cy} R[-1] \]

\[B^2 = 0 \]
Hochschild Homology and Cyclic Homology

Cyclic bar construction

\[N_q^{cy} R = R \otimes \cdots \otimes R \otimes R \]

\(q \) factors

\[R \otimes \cdots \otimes R \]

\[R \]

Chain complex

Cyclic structure \(\Rightarrow \) Connes’ \(B \) operator

\[B : N^{cy} R \to N^{cy} R[-1] \]
Hochschild Homology and Cyclic Homology

Cyclic bar construction

\[N_q^{cy} R = R \otimes \cdots \otimes R \otimes R \]

Chain complex

Cyclic structure \(\rightarrow \) Connes’ \(B \) operator

\[B : N^{cy}_\ast R \rightarrow N^{cy}_\ast R[-1] \]
Hochschild Homology and Cyclic Homology

Cyclic bar construction

\[N_q^{\text{cy}} R = R \otimes \cdots \otimes R \otimes R \]

\[q \text{ factors} \]

\[R \otimes \cdots \otimes R \]

\[\otimes \quad \otimes \]

\[R \]

Chain complex

Cyclic structure \(\implies \) Connes’ \(B \) operator

\[B : N^{\text{cy}} R \to N^{\text{cy}} R[-1] \]
Hochschild Homology and Cyclic Homology

Cyclic bar construction

\[N_q^{cy} R = R \otimes \cdots \otimes R \otimes R \]

\[q \text{ factors} \]

\[R \otimes \cdots \otimes R \]

\[R \]

Chain complex

Cyclic structure \(\Longrightarrow \) Connes’ \(B \) operator

\[B : N^{cy} R \rightarrow N^{cy} R[-1] \]

Construct Double Complex:

\[\cdots \]

\[\begin{array}{cccc}
\cdot & \Longrightarrow & \cdot & \Longrightarrow \\
\cdot & \Longrightarrow & \cdot & \Longrightarrow \\
\cdot & \Longrightarrow & \cdot & \Longrightarrow \\
\end{array} \]

\[\begin{array}{cccc}
\cdot & \Longrightarrow & \cdot & \Longrightarrow \\
\cdot & \Longrightarrow & \cdot & \Longrightarrow \\
\cdot & \Longrightarrow & \cdot & \Longrightarrow \\
\end{array} \]

\[\cdots \]

\[HP \]
Cyclic bar construction (Bökstedt)

\[N_q^{cy} R = \underbrace{R \wedge \cdots \wedge R \wedge R}_{q \text{ factors}} \]

Spectrum

Cyclic structure \(\longrightarrow\) circle group action
Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

\[N^c_y R = R \wedge \cdots \wedge R \wedge R \]

\[q \text{ factors} \]

\[R \wedge \cdots \wedge R \]
\[\wedge \quad \wedge \]
\[R \]

Spectrum

Cyclic structure \(\rightarrow\) circle group action

\[\Sigma X \rightarrow S^1 \wedge S^5 \]
\[X \sim \Omega X \]
Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

\[N_q^{cy} R = R \wedge \cdots \wedge R \wedge R \]

\[R \wedge \cdots \wedge R \]

\[\wedge \quad \wedge \]

R

Spectrum

Cyclic structure \(\rightarrow\) circle group action
Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

\[N_{q}^{\text{cy}} R = R \wedge \cdots \wedge R \wedge R \]

\[q \text{ factors} \]

\[R \wedge \cdots \wedge R \]

\[\wedge \quad \wedge \]

\[R \]

Construction

\[\cdots \]

\[\downarrow \]

\[\cdots \]

\[HH \text{ corresponds to } THH \]

Spectrum

Cyclic structure \(\longrightarrow\) circle group action
Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

\[N^c_y R = R \wedge \cdots \wedge R \wedge R \]

\[q \text{ factors} \]

\[R \wedge \cdots \wedge R \wedge \cdots \wedge R \wedge R \]

Spectrum

Cyclic structure \(\rightarrow\) circle group action

Construction

\[HH \text{ corresponds to } THH \]

\[HC \text{ corresponds to } THH_{h\mathbb{T}} \]
Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

\[N_q^{cy} R = R \wedge \ldots \wedge R \wedge R \]

\[R \wedge \ldots \wedge R \]

\[\wedge \ldots \wedge R \]

\[R \]

Construction

\[\cdots \leftarrow \bullet \leftarrow \bullet \]

\[\cdots \leftarrow \bullet \]

Spectrum

Cyclic structure \[\longrightarrow\] circle group action

HH corresponds to \(THH \)

HN corresponds to \(THH^hT \)
Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

\[N^c_y R = R \wedge \cdots \wedge R \wedge R \]

\[N^c_y R = \underbrace{R \wedge \cdots \wedge R \wedge R}_q \text{ factors} \]

\[R \wedge \cdots \wedge R \]

\[\wedge \quad \wedge \]

\[R \]

Spectrum

Cyclic structure \(\rightarrow \) circle group action

Construction

\[\cdots \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \cdots \]

\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \cdots \]

\[\cdots \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \cdots \]

\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]

\[\cdots \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \bullet \leftarrow \cdots \]

\[\downarrow \]

\[\cdots \leftarrow \bullet \]

\[\cdots \]

\[HH \text{ corresponds to } THH \]

\[HP \text{ corresponds to } THH^{tT} \]

M.A. Mandell (IU)
Topological Periodic Cyclic Homology

Definition
For a ring spectrum R, define the Topological Periodic Cyclic Homology of R by $TP(R) = THH(R)^Tt^T$.

Not always periodic e.g. $TP(\mathbb{Z})$

But $TP(\mathbb{Z})$ is reduced

$= W_{k} \mathbb{Z}[v, v^{-1}]$ $|v| = -2$.

Ψ
Topological Periodic Cyclic Homology

Definition

For a ring spectrum R, define the Topological Periodic Cyclic Homology of R by $TP(R) = THH(R)^{t\mathbb{T}}$.

Highlights

- Major player in trace method K-theory calculations
- Characteristic p replacement for HP (?)
Topological Periodic Cyclic Homology

Definition

For a ring spectrum R, define the Topological Periodic Cyclic Homology of R by $TP(R) = THH(R)^{t\mathbb{T}}$.

Highlights

- Major player in trace method K-theory calculations
- Characteristic p replacement for HP (?)
Introduction

Topological Periodic Cyclic Homology

Definition

For a ring spectrum R, define the Topological Periodic Cyclic Homology of R by $TP(R) = THH(R)^{t\mathbb{T}}$.

Highlights

- Major player in trace method K-theory calculations
- Characteristic p replacement for HP (?)

\[X \quad \text{smooth over } \mathbb{C} \]
\[\quad \text{or smooth f.g. } \mathbb{C} \text{-alg} \]

$HP_{\cdot} (X)$ is De Rham Cohomology
Topological Periodic Cyclic Homology

Definition

For a ring spectrum R, define the Topological Periodic Cyclic Homology of R by $TP(R) = THH(R)^{t\mathbb{T}}$.

Highlights

- Major player in trace method K-theory calculations
- Characteristic p replacement for HP (?)
 - (2014–) Hasse-Weil zeta function: Connes-Consani \sim Hesselholt
 - (2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuada
 non-commutative homological motives $\sim ????$
Topological Periodic Cyclic Homology

Definition

For a ring spectrum R, define the Topological Periodic Cyclic Homology of R by $TP(R) = THH(R)^T$.

Highlights

- Major player in trace method K-theory calculations
- Characteristic p replacement for HP (?)
 - (2014–) Hasse-Weil zeta function: Connes-Consani \rightsquigarrow Hesselholt
 - (2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuada
 non-commutative homological motives \rightsquigarrow ????
Topological Periodic Cyclic Homology

Definition
For a ring spectrum R, define the Topological Periodic Cyclic Homology of R by $TP(R) = THH(R)^{t\mathbb{T}}$.

Highlights
- Major player in trace method K-theory calculations
- **Characteristic p replacement for HP (?)**
 - (2014–) Hasse-Weil zeta function: Connes-Consani \rightsquigarrow Hesselholt
 - (2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuada
 non-commutative homological motives \rightsquigarrow ????
Topological Periodic Cyclic Homology

Definition

For a ring spectrum R, define the Topological Periodic Cyclic Homology of R by $TP(R) = THH(R)^{t\mathbb{T}}$.

Highlights

- Major player in trace method K-theory calculations
- Characteristic p replacement for $HP(?)$
 - (2014–) Hasse-Weil zeta function: Connes-Consani \rightsquigarrow Hesselholt
 - (2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuada
 non-commutative homological motives \rightsquigarrow ????

Realization functor / Weil cohomology theory

$$HP_*(X) \otimes_{k[t,t^{-1}]} HP_*(Y) \rightarrow HP_*(X \otimes_k Y)$$
Topological Periodic Cyclic Homology

Definition

For a ring spectrum R, define the Topological Periodic Cyclic Homology of R by $TP(R) = THH(R)^{t\mathbb{T}}$.

Highlights

- Major player in trace method K-theory calculations
- Characteristic p replacement for HP (?)
 - (2014–) Hasse-Weil zeta function: Connes-Consani \rightsquigarrow Hesselholt
 - (2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuada
 non-commutative homological motives \rightsquigarrow ????

Realization functor / Weil cohomology theory

$$HP_*(X) \otimes_{k[t,t^{-1}]} HP_*(Y) \rightarrow HP_*(X \otimes_k Y)$$

$|t| \leq 2$
Küneth Theorem

Theorem

Lax symmetric monoidal functor

\[
TP(X) \wedge_{TP(R)}^L TP(Y) \to TP(X \wedge_R^L Y)
\]

Definition

A \(k \)-algebra \(X \) is smooth when it is compact as an \(X \otimes_k X^{\text{op}} \)-module, i.e., when \(R \text{Hom}_{X \otimes_k X^{\text{op}}} (X, -) \) commutes with direct sums.

Definition

A \(k \)-algebra \(X \) is proper when it is compact as a \(k \)-module.
Künneth Theorem

Theorem

Let k be finite field. The lax symmetric monoidal functor

$$TP(X) \wedge_{TP(k)}^L TP(Y) \rightarrow TP(X \otimes_k Y)$$

is an isomorphism when X and Y are smooth and proper over k.

Definition

A k-algebra X is smooth when it is compact as an $X \otimes_k X^{\text{op}}$-module, i.e., when $R \text{Hom}_X^{X \otimes_k X^{\text{op}}}(X, -)$ commutes with direct sums.

Definition

A k-algebra X is proper when it is compact as a k-module.
Küneth Theorem

Theorem

Let k be finite field. The lax symmetric monoidal functor

$$TP(X) \hat{\wedge}^{L}_{TP(k)} TP(Y) \to TP(X \otimes_k Y)$$

is an isomorphism when X and Y are smooth and proper over k.

Definition

A k-algebra X is smooth when it is compact as an $X \otimes_k X^{\text{op}}$-module, i.e., when $R\text{Hom}^{X \otimes_k X^{\text{op}}}(X, _)$ commutes with direct sums.

Definition

A k-algebra X is proper when it is compact as a k-module.
Künneth Theorem

Theorem

Let k be finite field. The lax symmetric monoidal functor

$$TP(X) \bigwedge_{TP(k)}^L TP(Y) \rightarrow TP(X \otimes_k Y)$$

is an isomorphism when X and Y are smooth and proper over k.

Definition

A k-algebra X is smooth when it is compact as an $X \otimes_k X^{\text{op}}$-module, i.e., when $R \text{Hom}^{X \otimes_k X^{\text{op}}}(X, -)$ commutes with direct sums.

Definition

A k-algebra X is proper when it is compact as a k-module.
Künneth Theorem

Theorem

Let k be finite field. The lax symmetric monoidal functor

$$TP(X) \underset{TP(k)}{\wedge} TP(Y) \rightarrow TP(X \otimes_k Y)$$

is an isomorphism when X and Y are smooth and proper over k.

Definition

A k-algebra X is smooth when it is compact as an $X \otimes_k X^{\text{op}}$-module, i.e., when $R \text{Hom}^{X \otimes_k X^{\text{op}}}(X, -)$ commutes with direct sums.

Definition

A k-algebra X is proper when it is compact as a k-module.
Künneth Theorem

Theorem
Let k be finite field. The lax symmetric monoidal functor

$$TP(X) \wedge_{TP(k)}^{L} TP(Y) \to TP(X \otimes_k Y)$$

is an isomorphism when X and Y are smooth and proper over k.

Definition
A k-algebra X is smooth when it is compact as an $X \otimes_k X^{\text{op}}$-module, i.e., when $R\text{Hom}_{X \otimes_k X^{\text{op}}}(X, -)$ commutes with direct sums.

Definition
A k-algebra X is proper when it is compact as a k-module.
Review of Tate Construction

\[E \mathbb{T}_+ \to S^0 \to \widetilde{E} \mathbb{T} \]

Smash with \(Z^{E \mathbb{T}} \) and take fixed points

\[
(Z^{E \mathbb{T}} \wedge E \mathbb{T}_+)^T \to (Z^{E \mathbb{T}})^T \to (Z^{E \mathbb{T}} \wedge \widetilde{E} \mathbb{T})^T
\]

\[
(X^{E \mathbb{T}} \wedge E \mathbb{T}_+)^T \cong \Sigma(X^{E \mathbb{T}})_{h \mathbb{T}} \cong \Sigma X h \mathbb{T} \quad \text{(Adams Isomorphism)}
\]

Definition

For \(Z \) a \(\mathbb{T} \)-equivariant spectrum \(Z^{t \mathbb{T}} = (Z^{E \mathbb{T}} \wedge \widetilde{E} \mathbb{T})^T \).

(Composite of derived functors.)

\[
\Sigma Z_{h \mathbb{T}} \to Z^{h \mathbb{T}} \to Z^{t \mathbb{T}} \to \Sigma^2 Z_{h \mathbb{T}}
\]

\[
TP(X) = THH(X)^{t \mathbb{T}}
\]
Review of Tate Construction

\[E^T \xrightarrow{E^T_+} S^0 \rightarrow \widetilde{E^T} \]

Smash with \(Z^{E^T} \) and take fixed points

\[
(Z^{E^T} \wedge E^T_+)^T \rightarrow (Z^{E^T})^T \rightarrow (Z^{E^T} \wedge \widetilde{E^T})^T
\]

\[
(X^{E^T} \wedge E^T_+)^T \simeq \Sigma (X^{E^T})_{ht} \simeq \Sigma X hT \quad \text{(Adams Isomorphism)}
\]

Definition

For \(Z \) a \(T \)-equivariant spectrum \(Z^{tT} = (Z^{E^T} \wedge \widetilde{E^T})^T \).

(Composite of derived functors.)

\[
\Sigma Z_{ht} \rightarrow Z^{ht} \rightarrow Z^{tT} \rightarrow \Sigma^2 Z_{ht}
\]

\[
TP(X) = THH(X)^{tT}
\]
Review of Tate Construction

Smash with \mathbb{Z}^E_T and take fixed points

$$(Z^E_T \wedge E_{T+})^T \rightarrow (Z^E_T)^T \rightarrow (Z^E_T \wedge \widetilde{E}_T)^T$$

$$(X^E_T \wedge E_{T+})^T \simeq \Sigma(X^E_T)_{hT} \simeq \Sigma X h_T \quad \text{(Adams Isomorphism)}$$

Definition

For Z a T-equivariant spectrum $Z^{tT} = (Z^E_T \wedge \widetilde{E}_T)^T$.

(Composite of derived functors.)

$$\Sigma Z_{hT} \rightarrow Z^{hT} \rightarrow Z^{tT} \rightarrow \Sigma^2 Z_{hT}$$

$$TP(X) = THH(X)^{tT}$$
Review of Tate Construction

\[ET \xrightarrow{E_{\mathbb{T}+}} S^0 \xrightarrow{} ET \]

Smash with \(Z^{ET} \) and take fixed points

\[
(Z^{ET} \wedge E_{\mathbb{T}+})^T \rightarrow (Z^{ET})^T \rightarrow (Z^{ET} \wedge \widehat{ET})^T
\]

\[
(X^{ET} \wedge E_{\mathbb{T}+})^T \simeq \Sigma(X^{ET})_{h\mathbb{T}} \simeq \Sigma X h\mathbb{T} \quad \text{(Adams Isomorphism)}
\]

Definition

For \(Z \) a \(\mathbb{T} \)-equivariant spectrum \(Z^{t\mathbb{T}} = (Z^{ET} \wedge \widehat{ET})^T \).

(Composite of derived functors.)

\[
\Sigma Z_{h\mathbb{T}} \rightarrow Z^{h\mathbb{T}} \rightarrow Z^{t\mathbb{T}} \rightarrow \Sigma^2 Z_{h\mathbb{T}}
\]

\[
TP(X) = THH(X)^{t\mathbb{T}}
\]
Review of Tate Construction

\[E_T \xrightarrow{E_T +} S^0 \rightarrow \tilde{E}_T \]

Smash with \(Z^{E_T} \) and take fixed points

\[(Z^{E_T} \wedge E_{T+})^T \rightarrow (Z^{E_T})^T \rightarrow (Z^{E_T} \wedge \tilde{E}_T)^T \]

\[(X^{E_T} \wedge E_{T+})^T \simeq \Sigma(X^{E_T})_{hT} \simeq \Sigma X h_T \text{ (Adams Isomorphism)} \]

Definition

For \(Z \) a \(T \)-equivariant spectrum \(Z^{tT} = (Z^{E_T} \wedge \tilde{E}_T)^T \).

(Composite of derived functors.)

\[\Sigma Z_{hT} \rightarrow Z^{hT} \rightarrow Z^{tT} \rightarrow \Sigma^2 Z_{hT} \]

\[TP(X) = THH(X)^{tT} \]
Review of Tate Construction

\[E_T \rightarrow E_{T+} \rightarrow S^0 \rightarrow \widetilde{E}_T \]

Smash with \(Z^{E_T} \) and take fixed points

\[
(Z^{E_T} \wedge E_{T+})^T \rightarrow (Z^{E_T})^T \rightarrow (Z^{E_T} \wedge \widetilde{E}_T)^T
\]

\[
(X^{E_T} \wedge E_{T+})^T \cong \Sigma(X^{E_T})^T \cong \Sigma X^T \text{ (Adams Isomorphism)}
\]

Definition

For \(Z \) a \(T \)-equivariant spectrum \(Z^{t_T} = (Z^{E_T} \wedge \widetilde{E}_T)^T \).
(Composite of derived functors.)

\[
\Sigma Z^T \rightarrow Z^T \rightarrow Z^{t_T} \rightarrow \Sigma^2 Z^T
\]

\[TP(X) = THH(X)^{t_T} \]
Review of Tate Construction

\[E \mathbb{T} \quad E \mathbb{T}_+ \rightarrow S^0 \rightarrow \widetilde{E} \mathbb{T} \]

Smash with \(Z^{E \mathbb{T}} \) and take fixed points

\[
(Z^{E \mathbb{T}} \wedge E \mathbb{T}_+)^T \rightarrow (Z^{E \mathbb{T}})^T \rightarrow (Z^{E \mathbb{T}} \wedge \widetilde{E} \mathbb{T})^T \\
(X^{E \mathbb{T}} \wedge E \mathbb{T}_+)^T \simeq \Sigma(X^{E \mathbb{T}})^{h \mathbb{T}} \simeq \Sigma X^{h \mathbb{T}} \quad \text{(Adams Isomorphism)}
\]

Definition

For \(Z \) a \(\mathbb{T} \)-equivariant spectrum \(Z^{t \mathbb{T}} = (Z^{E \mathbb{T}} \wedge \widetilde{E} \mathbb{T})^T \).

(Composite of derived functors.)

\[
\Sigma Z_{h \mathbb{T}} \rightarrow Z^{h \mathbb{T}} \rightarrow Z^{t \mathbb{T}} \rightarrow \Sigma^2 Z_{h \mathbb{T}}
\]

\[
TP(X) = THH(X)^{t \mathbb{T}}
\]
Review of Tate Construction

\[E^T \xrightarrow{E^T_+} S^0 \rightarrow \widetilde{E}^T \]

Smash with \(Z^{E^T} \) and take fixed points

\[
(Z^{E^T} \wedge E^T_+)^T \rightarrow (Z^{E^T})^T \rightarrow (Z^{E^T} \wedge \widetilde{E}^T)^T \\
(X^{E^T} \wedge E^T_+)^T \simeq \Sigma(X^{E^T})_{hT} \simeq \Sigma X h^T \quad \text{(Adams Isomorphism)}
\]

Definition

For \(Z \) a \(T \)-equivariant spectrum \(Z^{tT} = (Z^{E^T} \wedge \widetilde{E}^T)^T \).

(Composite of derived functors.)

\[
\Sigma Z_{hT} \rightarrow Z^{hT} \rightarrow Z^{tT} \rightarrow \Sigma^2 Z_{hT}
\]

\[TP(X) = THH(X)^{tT} \]
Review of Tate Construction

\[E_T \quad E_T^+ \to S^0 \to \tilde{E}_T \]

Smash with \(Z^{E_T} \) and take fixed points

\[
(Z^{E_T} \wedge E_T^+)^T \to (Z^{E_T})^T \to (Z^{E_T} \wedge \tilde{E}_T)^T
\]

\[
(X^{E_T} \wedge E_T^+)^T \simeq \Sigma (X^{E_T})_h^T \simeq \Sigma X h_T \quad \text{(Adams Isomorphism)}
\]

Definition

For \(Z \) a \(\mathbb{T} \)-equivariant spectrum \(Z^{t_T} = (Z^{E_T} \wedge \tilde{E}_T)^T \).

(Composite of derived functors.)

\[
\Sigma Z_{h_T} \to Z^{h_T} \to (Z^{t_T}) \to \Sigma^2 Z_{h_T}
\]

\[TP(X) = \text{THH}(X)^{t_T} \]
The Multiplication

\[TP(X) \land TP(Y) \rightarrow TP(X \land Y) \]

\[TP(X) = (THH(X)_{ET} \land \tilde{ET})^T \]

- \(\tilde{ET} \land \tilde{ET} \simeq \tilde{ET} \)
- Use diagonal map \(ET \rightarrow ET \times ET \)
- \(THH(X) \land THH(Y) \cong THH(X \land Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \tilde{ET})^T \]

- \(\tilde{ET} \wedge \tilde{ET} \simeq \tilde{ET} \)
- Use diagonal map \(ET \rightarrow ET \times ET \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \to TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \widetilde{ET})^T \]

- \(\widetilde{ET} \wedge \widetilde{ET} \simeq \widetilde{ET} \)
- Use diagonal map \(ET \to ET \times ET \)
- \(THH(X) \wedge THH(Y) \simeq THH(X \wedge Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \tilde{ET})^T \]

- \(\tilde{ET} \wedge \tilde{ET} \simeq \tilde{ET} \)
- Use diagonal map \(ET \rightarrow ET \times ET \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)
The Multiplication

\[TP(X) \land TP(Y) \rightarrow TP(X \land Y) \]

\[TP(X) = (THH(X)^{ET} \land \tilde{ET})^T \]

- \[\tilde{ET} \land \tilde{ET} \simeq \tilde{ET} \]
- Use diagonal map \[ET \rightarrow ET \times ET \]
- \[THH(X) \land THH(Y) \simeq THH(X \land Y) \]
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \widetilde{ET})^T \]

- \(\widetilde{ET} \wedge \widetilde{ET} \simeq \widetilde{ET} \)
- Use diagonal map \(ET \rightarrow ET \times ET \)
- \(THH(X) \wedge THH(Y) \simeq THH(X \wedge Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{E_T} \wedge \tilde{E_T})^T \]

- \(\tilde{E_T} \wedge \tilde{E_T} \simeq \tilde{E_T} \)
- Use diagonal map \(E_T \rightarrow E_T \times E_T \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)
The Multiplication

\[TP(X) \land TP(Y) \rightarrow TP(X \land Y) \]

\[TP(X) = (THH(X)^{ET} \land \tilde{ET})^T \]

- \(\tilde{ET} \land \tilde{ET} \cong \tilde{ET} \)
- Use diagonal map \(ET \rightarrow ET \times ET \)
- \(THH(X) \land THH(Y) \cong THH(X \land Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \to TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \tilde{ET})^T \]

- \(\tilde{ET} \wedge \tilde{ET} \simeq \tilde{ET} \)
- Use diagonal map \(ET \to ET \times ET \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \to TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \tilde{ET})^T \]

- \(\tilde{ET} \wedge \tilde{ET} \simeq \tilde{ET} \)
- Use diagonal map \(ET \to ET \times ET \)
- \(THH(X) \wedge THH(Y) \simeq THH(X \wedge Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \widetilde{ET})^T \]

- \(\widetilde{ET} \wedge \widetilde{ET} \simeq \widetilde{ET} \)
- Use diagonal map \(ET \rightarrow ET \times ET \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)
The Multiplication

\[TP(X) \land TP(Y) \to TP(X \land Y) \]

\[TP(X) = (THH(X)^{E_T} \land \widetilde{E_T})^T \]

- \(\widetilde{E_T} \land \widetilde{E_T} \simeq \widetilde{E_T} \)
- Use diagonal map \(E_T \to E_T \times E_T \)
- \(THH(X) \land THH(Y) \cong THH(X \land Y) \)
The Multiplication

\[TP(X) \land TP(Y) \rightarrow TP(X \land Y) \]

\[TP(X) = (THH(X)^E_T \land \tilde{E}_T)^T \]

- \[\tilde{E}_T \land \tilde{E}_T \simeq \tilde{E}_T \]
- Use diagonal map \[E_T \rightarrow E_T \times E_T \]
- \[THH(X) \land THH(Y) \simeq THH(X \land Y) \]
The Multiplication

\[\text{TP}(X) \wedge \text{TP}(Y) \to \text{TP}(X \wedge Y) \]

\[\text{TP}(X) = \left(\text{THH}(X)^{E_T} \wedge \tilde{E_T} \right)^T \]

- \(\tilde{E_T} \wedge \tilde{E_T} \simeq \tilde{E_T} \)
- Use diagonal map \(E_T \to E_T \times E_T \)
- \(\text{THH}(X) \wedge \text{THH}(Y) \cong \text{THH}(X \wedge Y) \)

\[\text{TP}(X) \wedge_{\text{TP}(R)} \text{TP}(Y) \to \text{TP}(X \wedge_R Y) \]
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{E_T} \wedge \tilde{E_T})^T \]

- \(\tilde{E_T} \wedge \tilde{E_T} \cong \tilde{E_T} \)
- Use diagonal map \(E_T \rightarrow E_T \times E_T \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)

\[TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y) \]

\[TP(X) \wedge TP(R) \wedge TP(Y) \rightarrow TP(X \wedge R \wedge Y) \]
The Multiplication

\[TP(X) \land TP(Y) \rightarrow TP(X \land Y) \]

\[TP(X) = (THH(X)^{E_T} \land \widetilde{E_T})^T \]

- \(\widetilde{E_T} \land \widetilde{E_T} \cong \widetilde{E_T} \)
- Use diagonal map \(E_T \rightarrow E_T \times E_T \) ← This is coherent
- \(THH(X) \land THH(Y) \cong THH(X \land Y) \)

\[TP(X) \land_{TP(R)} TP(Y) \rightarrow TP(X \land_R Y) \]
\[TP(X) \land TP(R) \land TP(Y) \rightarrow TP(X \land R \land Y) \]
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \widetilde{ET})^T \]

- \(\widetilde{ET} \wedge \widetilde{ET} \simeq \widetilde{ET} \) ← This can be made coherent!
- Use diagonal map \(ET \rightarrow ET \times ET \) ← This is coherent
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)

\[TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y) \]

\[TP(X) \wedge TP(R) \wedge TP(Y) \rightarrow TP(X \wedge R \wedge Y) \]
Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

$TP(X) = (\text{THH}(X)^{ET} \wedge \tilde{E}_T)^T$

Simplicial filtration on E_T

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

$TP(X) = (\text{THH}(X)^{ET} \land \tilde{ET})^T$

Simplicial filtration on ET

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} THH(X)$$

$$TP(X) = (THH(X)^E_T \wedge \widetilde{E}_T)^T$$

Simplicial filtration on E_T

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} THH(X)$$

$$TP(X) = (THH(X)E_T^\wedge \wedge \tilde{E}_T^T)^T$$

Simplicial filtration on E_T

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} THH(X)$$

$$TP(X) = (THH(X)^E_T \wedge \widetilde{E}_T)^T$$

Simplicial filtration on E_T

$\mathbb{T}_+, \Sigma^2 \mathbb{T}_+, \Sigma^4 \mathbb{T}_+, \ldots$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

$TP(X) = (\text{THH}(X)^{E_T} \wedge \tilde{E_T})^T$

Simplicial filtration on E_T

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$

$$T_+ \wedge (T/\{1\}) \wedge (\Delta[1]/\partial \Delta[1])$$
The Filtration

Filtration on \(TP(X) \) with associated graded

\[
F^i / F^{i-1} \simeq \Sigma^{2i} THH(X)
\]

\[
TP(X) = (THH(X)E_T \wedge \tilde{E}_T)^T
\]

Simplicial filtration on \(E_T \)

\(\mathbb{T}_+, \Sigma^2 \mathbb{T}_+, \Sigma^4 \mathbb{T}_+, \ldots \)

\[
\mathbb{T}_+ \wedge (\mathbb{T} \times \mathbb{T}/(\mathbb{T} \vee \mathbb{T})) \wedge \Delta[2]/\partial \Delta[2]
\]

\[
\mathbb{T} \times \mathbb{T} \times \mathbb{T}
\]
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

$$TP(X) = (\text{THH}(X)^{ET} \land \widetilde{ET})^T$$

Simplicial filtration on E_T

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} THH(X)$$

$$TP(X) = (THH(X)^{ET} \wedge \tilde{E}_T)^T$$

Simplicial filtration on E_T / on \tilde{E}_T

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$ / $S^0, \Sigma T_+, \Sigma^3 T_+, \ldots$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} THH(X)$$

$$TP(X) = (THH(X)^{E_T} \wedge \widetilde{E_T})^T$$

Simplicial filtration on E_T / on $\widetilde{E_T}$

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$ / $S^0, \Sigma T_+, \Sigma^3 T_+, \ldots$

Filtration on $TP(X)$:

$$F^i TP(X) = \begin{cases} (THH(X)^{(E_T, E_T_{-i-1})} \wedge S^0)^T & i \leq 0 \\ (THH(X)^{E_T} \wedge \widetilde{E_T}_i)^T & i > 0 \end{cases}$$

$$F^i / F^{i-1} = \begin{cases} (THH(X)^{(\Sigma^{2i} T_+)})^T & i \leq 0 \\ (THH(X)^{E_T} \wedge \Sigma^{2i-1} T_+)^T & i > 0 \end{cases}$$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

$$TP(X) = (\text{THH}(X)E^{\mathbb{T}} \wedge \tilde{E}^{\mathbb{T}})^{\mathbb{T}}$$

Simplicial filtration on $E^{\mathbb{T}}$ / on $\tilde{E}^{\mathbb{T}}$

$\mathbb{T}^+, \Sigma^2 \mathbb{T}^+, \Sigma^4 \mathbb{T}^+, \ldots$ / $S^0, \Sigma \mathbb{T}^+, \Sigma^3 \mathbb{T}^+, \ldots$

Filtration on $TP(X)$:

$$F^i TP(X) = \begin{cases} (\text{THH}(X)(E^{\mathbb{T},E^{\mathbb{T}}_{i-1}}) \wedge S^0)^{\mathbb{T}} & i \leq 0 \\ (\text{THH}(X)E^{\mathbb{T}} \wedge \tilde{E}^{\mathbb{T},i})^{\mathbb{T}} & i > 0 \end{cases}$$

$$F^i / F^{i-1} = \begin{cases} (\text{THH}(X)(\Sigma^{2i} \mathbb{T}^+))^\mathbb{T} & i \leq 0 \\ (\text{THH}(X)E^{\mathbb{T}} \wedge \Sigma^{2i-1} \mathbb{T}^+)^{\mathbb{T}} & i > 0 \end{cases}$$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} THH(X)$$

$TP(X) = (THH(X)^E_T \wedge \tilde{E}_T)^T$

Simplicial filtration on E_T / \tilde{E}_T

$\mathbb{T}_+, \Sigma^2 \mathbb{T}_+, \Sigma^4 \mathbb{T}_+, \ldots / S^0, \Sigma \mathbb{T}_+, \Sigma^3 \mathbb{T}_+, \ldots$

Filtration on $TP(X)$:

$$F^i TP(X) = \begin{cases}
(THH(X)^{(E_T,E_{T-i})} \wedge S^0)^T & i \leq 0 \\
(THH(X)^{E_T} \wedge \tilde{E}_T_i)^T & i > 0
\end{cases}$$

$$F^i / F^{i-1} = \begin{cases}
(THH(X)^{(\Sigma^{2i} \mathbb{T}_+})^T & i \leq 0 \\
(THH(X)^{E_T} \wedge \Sigma^{2i-1} \mathbb{T}_+)^T & i > 0
\end{cases}$$
The Spectral Sequence

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} THH(X)$$

Spectral sequence

$$E^1_{i,j} = \pi_{i+j} \Sigma^{2i} THH(X) = THH_{j-i}(X)$$

Renumber: Double filtration degree

$$E^{2r}_{2i,j} = (E^r_{i,i+j})^{old}, \quad d_{2r} = (d_r)^{old}$$

(1, 1) periodic on E^1

Spectral Sequence

Conditionally convergent spectral sequence

$$E^2_{2i,j} = \text{THH}(X) \Longrightarrow TP_{2i+j}(X). \quad (E^r_{2i+1,j} = 0)$$
The Spectral Sequence

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \cong \Sigma^{2i} \text{THH}(X)$$

Spectral sequence

$$E^1_{i,j} = \pi_{i+j} \Sigma^{2i} \text{THH}(X) = \text{THH}_{j-i}(X)$$

Renumber: Double filtration degree

$$E^2_{2i,j} = (E^r_{i,i+j})^{\text{old}}, \quad d_{2r} = (d_r)^{\text{old}}$$

Conditionally convergent spectral sequence

$$E^2_{2i,j} = \text{THH}_j(X) \implies TP_{2i+j}(X). \quad (E^r_{2i+1,j} = 0)$$
The Spectral Sequence

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

Spectral sequence

$$E^1_{i,j} = \pi_{i+j}\Sigma^{2i} \text{THH}(X) = \text{THH}_{j-i}(X)$$

Renumber: Double filtration degree

$$E^{2r}_{2i,j} = (E^r_{i,i+j})^{\text{old}}, \quad d_{2r} = (d_r)^{\text{old}}$$

Conditionally convergent spectral sequence

$$E^2_{2i,j} = \text{THH}_j(X) \implies TP_{2i+j}(X). \quad (E^r_{2i+1,j} = 0)$$
The Spectral Sequence

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

Spectral sequence

$$E^1_{i,j} = \pi_{i+j} \Sigma^{2i} \text{THH}(X) = \text{THH}_{j-i}(X)$$

Renumber: Double filtration degree

$$E^{2r}_{2i,j} = (E^r_{i,i+j})^{\text{old}}, \quad d_{2r} = (d_r)^{\text{old}}$$

Spectral Sequence

Conditionally convergent spectral sequence

$$E^2_{2i,j} = \text{THH}_j(X) \Rightarrow TP_{2i+j}(X). \quad (E^r_{2i+1,j} = 0)$$
Combining the Multiplication and Filtration

Multiplicative spectral sequence:

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \text{ a filtered map} \]
Combining the Multiplication and Filtration

Multiplicative spectral sequence:

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \text{ a filtered map} \]

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal (E_T \rightarrow E_T \times E_T)</td>
<td>Simplicial/cellular filt. on (E_T)</td>
</tr>
<tr>
<td>Mult. (\tilde{E}_T \wedge \tilde{E}_T \simeq \tilde{E}_T)</td>
<td>Filtration on (\tilde{E}_T)</td>
</tr>
</tbody>
</table>
Combining the Multiplication and Filtration

Multiplicative spectral sequence:

\[TP(X) \wedge TP(Y) \to TP(X \wedge Y) \] a filtered map

In homotopy category, easy obstruction theory cellular approximation to diagonal & multiplication.

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal (E_T \to E_T \times E_T)</td>
<td>Simplicial/cellular filt. on (E_T)</td>
</tr>
<tr>
<td>Mult. (\tilde{E}_T \wedge \tilde{E}_T \simeq \tilde{E}_T)</td>
<td>Filtration on (\tilde{E}_T)</td>
</tr>
</tbody>
</table>
Combining the Multiplication and Filtration

Multiplicative spectral sequence:
\[TP(X) \wedge TP(Y) \to TP(X \wedge Y) \] a filtered map

In homotopy category, easy obstruction theory cellular approximation to diagonal & multiplication.

What about
\[TP(X) \wedge_{TP(R)} TP(X) \to TP(X \wedge_R Y) \]?

\[\Rightarrow \text{map of spectral sequences} \]

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal (E_T \to E_T \times E_T)</td>
<td>Simplicial/cellular filt. on (E_T)</td>
</tr>
<tr>
<td>Mult. (\widetilde{E_T} \wedge \widetilde{E_T} \simeq \widetilde{E_T})</td>
<td>Filtration on (\widetilde{E_T})</td>
</tr>
</tbody>
</table>
Combining the Multiplication and Filtration

Multiplicative spectral sequence:

$$TP(X) \wedge TP(Y) \to TP(X \wedge Y)$$

Is a filtered map? Coherent model?

In homotopy category, easy obstruction theory cellular approximation to diagonal & multiplication.

What about $$TP(X) \wedge_{TP(R)} TP(X) \to TP(X \wedge_R Y)$$?

$$\Rightarrow$$ map of spectral sequences

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>Simplicial/cellular filt. on $$E_T$$</td>
</tr>
<tr>
<td>$$E_T \to E_T \times E_T$$</td>
<td>Filtration on $$\widetilde{E_T}$$</td>
</tr>
<tr>
<td>Mult. $$\widetilde{E_T} \wedge \widetilde{E_T} \simeq \widetilde{E_T}$$</td>
<td></td>
</tr>
</tbody>
</table>
Combining the Multiplication and Filtration

Multiplicative spectral sequence:

\[TP(X) \wedge TP(Y) \to TP(X \wedge Y) \] a filtered map? Coherent model?

In homotopy category, easy obstruction theory cellular approximation to diagonal & multiplication.

What about \(TP(X) \wedge_{TP(R)} TP(X) \to TP(X \wedge_R Y) \)?

\[\implies \text{map of spectral sequences} \]

Definitely not with symmetry.

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal (E_T \to E_T \times E_T)</td>
<td>Simplicial/cellular filt. on (E_T)</td>
</tr>
<tr>
<td>Mult. (\tilde{E}_T \wedge \tilde{E}_T \simeq \tilde{E}_T)</td>
<td>Filtration on (\tilde{E}_T)</td>
</tr>
</tbody>
</table>
Combining the Multiplication and Filtration

Multiplicative spectral sequence:

\[TP(X) \wedge TP(Y) \to TP(X \wedge Y) \] a filtered map? Coherent model?

In homotopy category, easy obstruction theory cellular approximation to diagonal & multiplication.

What about \(TP(X)^{\wedge_{TP(R)}} TP(X) \to TP(X \wedge_R Y) \)?

\[\implies \text{map of spectral sequences} \]

Definitely not with symmetry. What about just associativity?

Coherently homotopy associative cellular approximation to diagonal?

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal (E_T \to E_T \times E_T)</td>
<td>Simplicial/cellular filt. on (E_T)</td>
</tr>
<tr>
<td>Mult. (\tilde{E}_T \wedge \tilde{E}_T \simeq \tilde{E}_T)</td>
<td>Filtration on (\tilde{E}_T)</td>
</tr>
</tbody>
</table>
Combining the Multiplication and Filtration

Multiplicative spectral sequence:

\[T_P(X) \land T_P(Y) \to T_P(X \land Y) \] a filtered map? Coherent model?

In homotopy category, easy obstruction theory cellular approximation to diagonal & multiplication.

What about \[T_P(X) \land_{T_P(R)} T_P(X) \to T_P(X \land_R Y) \]?

\[\implies \] map of spectral sequences

Definitely not with symmetry. What about just associativity?

Coherently homotopy associative cellular approximation to diagonal?

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Diagonal [E_T \to E_T \times E_T]</td>
<td>-Simplicial/cellular filt. on [E_T]</td>
</tr>
<tr>
<td>-Mult. [\tilde{E}_T \land \tilde{E}_T \simeq \tilde{E}_T]</td>
<td>-Filtration on [\tilde{E}_T]</td>
</tr>
</tbody>
</table>
Combining the Multiplication and Filtration

Multiplicative spectral sequence:

\[TP(X) \wedge TP(Y) \to TP(X \wedge Y) \]
a filtered map? Coherent model?

In homotopy category, easy obstruction theory cellular approximation to diagonal & multiplication.

What about \(TP(X) \wedge_{TP(R)} TP(X) \to TP(X \wedge_R Y) \)?

\[\implies \text{map of spectral sequences} \]

 Definitely not with symmetry. What about just associativity?

Coherently homotopy associative cellular approximation to diagonal?

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Diagonal (ET \to ET \times ET)</td>
<td>• Simplicial/cellular filt. on (ET)</td>
</tr>
<tr>
<td>• Mult. (\tilde{E}T \wedge \tilde{E}T \sim \tilde{E}T)</td>
<td>• Filtration on (\tilde{E}T)</td>
</tr>
</tbody>
</table>
Combining the Multiplication and Filtration

Multiplicative spectral sequence:

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \] a filtered map? Coherent model?

In homotopy category, easy obstruction theory cellular approximation to diagonal & multiplication.

What about \(TP(X) \wedge_{TP(R)} TP(X) \rightarrow TP(X \wedge_R Y) \)?

\[\Rightarrow \text{map of spectral sequences} \]

Definitely not with symmetry. What about just associativity?

Coherently homotopy associative cellular approximation to diagonal!

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Diagonal (E_T \rightarrow E_T \times E_T)</td>
<td>● Simplicial/cellular filt. on (E_T)</td>
</tr>
<tr>
<td>● Mult. (\tilde{E}_T \wedge \tilde{E}_T \simeq \tilde{E}_T)</td>
<td>● Filtration on (\tilde{E}_T)</td>
</tr>
</tbody>
</table>
Approximation of the diagonal for simplicial spaces

Let X_\bullet be a simplicial space, $|X_\bullet|$ its geometric realization. $|X_\bullet^n|$ vs $|X_\bullet|^n$

Problem

Parametrize a contractible spaces of filtered approximations of the diagonal maps $|X_\bullet| \to |X_\bullet|^n$ for all n that compose appropriately.

Find an A_∞ operad \mathcal{A} and a map of operads $\mathcal{A}(n) \to \text{Filt}(|X_\bullet|, |X_\bullet|^n) \subset \mathcal{T}(|X_\bullet|, |X_\bullet|^n)$.
Approximation of the diagonal for simplicial spaces

Let X_\bullet be a simplicial space, $|X_\bullet|$ its geometric realization. $|X^n_\bullet|$ vs $|X^n_\bullet|$

Problem

Parametrize a contractible spaces of filtered approximations of the diagonal maps $|X_\bullet| \rightarrow |X_\bullet|^n$ for all n that compose appropriately.

Find an A_∞ operad A and a map of operads

$A(n) \rightarrow \text{Filt}(|X_\bullet|, |X_\bullet|^n) \subset \mathcal{T}(|X_\bullet|, |X_\bullet|^n)$.

\[\begin{array}{c}
\Delta \\
X
\end{array} \]
Approximation of the diagonal for simplicial spaces

Let X_\bullet be a simplicial space, $|X_\bullet|$ its geometric realization. $|X_\bullet|^n$ vs $|X_\bullet|^n$

Problem

Parametrize a contractible spaces of filtered approximations of the diagonal maps $|X_\bullet| \to |X_\bullet|^n$ for all n that compose appropriately.

Find an A_∞ operad \mathcal{A} and a map of operads

$$\mathcal{A}(n) \to \text{Filt}(|X_\bullet|, |X_\bullet|^n) \subset \mathcal{T}(|X_\bullet|, |X_\bullet|^n).$$
Approximation of the diagonal for simplicial spaces

Let X_\bullet be a simplicial space, $|X_\bullet|$ its geometric realization. $|X_\bullet^n|$ vs $|X_\bullet|^n$

Problem

Parametrize a contractible spaces of filtered approximations of the diagonal maps $|X_\bullet| \to |X_\bullet|^n$ for all n that compose appropriately.

Find an A_∞ operad \mathcal{A} and a map of operads

$\mathcal{A}(n) \to \text{Filt}(|X_\bullet|, |X_\bullet|^n) \subset \mathcal{T}(|X_\bullet|, |X_\bullet|^n)$.

Barycentric Coordinates and Milnor Coordinates on $\Delta[m]$

Barycentric t_0, \ldots, t_m, $\sum t_i = 1 \leftrightarrow$ Milnor $0 \leq u_0 \leq u_1 \leq \cdots \leq u_{m-1} \leq 1$

An element in $|X_\bullet|$ is specified by $(x \in X_m, 0 \leq u_0 \leq \cdots \leq u_{m-1} \leq 1)$
Approximation of the diagonal for simplicial spaces

Let X_\bullet be a simplicial space, $|X_\bullet|$ its geometric realization. $|X_\bullet|^n$ vs $|X_\bullet|^n$

Problem

Parametrize a contractible spaces of filtered approximations of the diagonal maps $|X_\bullet| \to |X_\bullet|^n$ for all n that compose appropriately.

Find an A_{∞} operad \mathcal{A} and a map of operads $\mathcal{A}(n) \to \text{Filt}(|X_\bullet|, |X_\bullet|^n) \subset \mathcal{T}(|X_\bullet|, |X_\bullet|^n)$.

Barycentric Coordinates and Milnor Coordinates on $\Delta[m]$

Barycentric $t_0, \ldots, t_m, \sum t_i = 1 \leftrightarrow$ Milnor $0 \leq u_0 \leq u_1 \leq \cdots \leq u_{m-1} \leq 1$

An element in $|X_\bullet|$ is specified by $(x \in X_m, 0 \leq u_0 \leq \cdots \leq u_{m-1} \leq 1)$
Approximation of the diagonal for simplicial spaces (ii)

Problem

Parametrize a contractible spaces of filtered approximations of the diagonal maps $|X_{\bullet}| \to |X_{\bullet}|^n$ for all n that compose appropriately.

Solution
Problem

Parametrize a contractible spaces of filtered approximations of the diagonal maps $|X_\bullet| \to |X_\bullet|^n$ for all n that compose appropriately.

Solution

1. The overlapping little 1-cubes operad C_{Ξ}^1
Approximation of the diagonal for simplicial spaces (ii)

Problem

Parametrize a contractible spaces of filtered approximations of the diagonal maps $|X_\bullet| \to |X_\bullet|^n$ for all n that compose appropriately.

Solution

1. The overlapping little 1-cubes operad C_1^Ξ
2. The map $C_1^\Xi \to \mathcal{T}(|X_\bullet|, |X_\bullet|^n)$.
Approximation of the diagonal for simplicial spaces (ii)

Problem

Parametrize a contractible spaces of filtered approximations of the diagonal maps $|X_{\bullet}| \to |X_{\bullet}|^n$ for all n that compose appropriately.

Solution

1. The overlapping little 1-cubes operad C_1^{Ξ}
2. The map $C_1^{\Xi} \to T(|X_{\bullet}|, |X_{\bullet}|^n)$.

An element $c \in C^{\Xi}(n)$ specifies n monotonic PL maps $g_i: I \to I$
Approximation of the diagonal for simplicial spaces (ii)

Problem

Parametrize a contractible spaces of filtered approximations of the diagonal maps $|X\bullet| \to |X\bullet|^n$ for all n that compose appropriately.

Solution

1. The overlapping little 1-cubes operad C_1^Ξ
2. The map $C_1^\Xi \to T(|X\bullet|, |X\bullet|^n)$.

An element $c \in C_1^\Xi(n)$ specifies n monotonic PL maps $g_i : I \to I$

$$
(x, 0 \leq u_0 \leq \cdots \leq u_{m-1} \leq 1) \mapsto
((x, 0 \leq g_1(u_0) \leq \cdots \leq g_1(u_{m-1}) \leq 1), \ldots, (x, 0 \leq g_n(u_0) \leq \cdots \leq g_n(u_{m-1}) \leq 1))
$$
Approximation of the diagonal for simplicial spaces (ii)

Problem

Parametrize a contractible spaces of filtered approximations of the diagonal maps $|X| \to |X|^n$ for all n that compose appropriately.

Solution

1. The overlapping little 1-cubes operad \mathcal{C}_1^Ξ
2. The map $\mathcal{C}_1^\Xi \to \mathcal{T}(|X|, |X|^n)$.
3. little 1-cubes operad $\mathcal{C}_1 \subset \mathcal{C}_1^\Xi$.

An element $c \in \mathcal{C}^\Xi(n)$ specifies n monotonic PL maps $g_i : I \to I$

\[(x, 0 \leq u_0 \leq \cdots \leq u_{m-1} \leq 1) \mapsto ((x, 0 \leq g_1(u_0) \leq \cdots \leq g_1(u_{m-1}) \leq 1), \ldots, (x, 0 \leq g_n(u_0) \leq \cdots \leq g_n(u_{m-1}) \leq 1))\]
A filtered approximation of the diagonal gives a map

\[E_{T_{i+j-1}} \to (E_{T_{i-1}} \times E_T) \cup (E_T \times E_{T_{j-1}}) \subset E_T \times E_T \]

Hence a map \((E_T, E_{T_{i+j-1}}) \to (E_T, E_{T_{i-1}}) \times (E_T, E_{T_{j-1}})\)

Applied to \(TP\)
Filtered Monoidal Structure

A filtered approximation of the diagonal gives a map

\[E^{T_{i+j-1}} \to (E^{T_{i-1}} \times E^{T}) \cup (E^{T} \times E^{T_{j-1}}) \subset E^{T} \times E^{T} \]

Hence a map \((E^{T}, E^{T_{i+j-1}}) \to (E^{T}, E^{T_{i-1}}) \times (E^{T}, E^{T_{j-1}})\)

Applied to \(TP\)
Filtered Monoidal Structure

A filtered approximation of the diagonal gives a map

\[E_T^{i+j-1} \rightarrow (E_T^{i-1} \times E_T) \cup (E_T \times E_T^{j-1}) \subset E_T \times E_T \]

Hence a map \((E_T, E_T^{i+j-1}) \rightarrow (E_T, E_T^{i-1}) \times (E_T, E_T^{j-1})\)

Applied to \(TP\)
Filtered Monoidal Structure

A filtered approximation of the diagonal gives a map

$$E^{T_{i+j-1}} \rightarrow (E^{T_{i-1}} \times E^{T}) \cup (E^{T} \times E^{T_{j-1}}) \subset E^{T} \times E^{T}$$

Hence a map $$(E^{T}, E^{T_{i+j-1}}) \rightarrow (E^{T}, E^{T_{i-1}}) \times (E^{T}, E^{T_{j-1}})$$

Applied to TP

$$F^{-i} TP(X) \land F^{-j} TP(X) \rightarrow F^{-i-j} TP(X \land Y)$$
Filtered Monoidal Structure

A filtered approximation of the diagonal gives a map

\[E^T_{i+j-1} \to (E^T_{i-1} \times E^T) \cup (E^T \times E^T_{j-1}) \subset E^T \times E^T \]

Hence a map \((E^T, E^T_{i+j-1}) \to (E^T, E^T_{i-1}) \times (E^T, E^T_{j-1})\)

Parametrized

\[\mathcal{C}_1(n) \wedge F^{-i_1} \text{TP}(X_1) \wedge \cdots \wedge F^{-i_n} \text{TP}(X_n) \to F^{-i_1-\cdots-i_n} \text{TP}(X_1 \wedge \cdots \wedge X_n) \]
A filtered approximation of the diagonal gives a map

\[E^T_{i+j-1} \to (E^T_{i-1} \times E^T) \cup (E^T \times E^T_{j-1}) \subset E^T \times E^T \]

Hence a map \((E^T, E^T_{i+j-1}) \to (E^T, E^T_{i-1}) \times (E^T, E^T_{j-1})\)

Parametrized

\[C_1(n)_+ \wedge F^{-i_1} \text{TP}(X_1) \wedge \cdots \wedge F^{-i_n} \text{TP}(X_n) \to F^{-i_1 - \cdots - i_n} \text{TP}(X_1 \wedge \cdots \wedge X_n) \]

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative

\[F^{-i} \text{TP}(X) \wedge \mathbb{R}^0_+ \wedge F^{-j} \text{TP}(Y) \wedge \mathbb{R}^0_+ \to F^{-i-j} \text{TP}(X \wedge Y) \wedge \mathbb{R}^0_+ \]
Filtered Monoidal Structure

A filtered approximation of the diagonal gives a map

\[E^T_{i+j-1} \to (E^T_{i-1} \times E^T) \cup (E^T \times E^T_{j-1}) \subset E^T \times E^T \]

Hence a map \((E^T, E^T_{i+j-1}) \to (E^T, E^T_{i-1}) \times (E^T, E^T_{j-1})\)

Parametrized

\[C_1(n)_+ \wedge F^{-i_1} TP(X_1) \wedge \cdots \wedge F^{-i_n} TP(X_n) \to F^{-i_{i_1} \cdots i_n} TP(X_1 \wedge \cdots \wedge X_n) \]

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative

\[F^{-i} TP(X) \wedge \mathbb{R}^{>0}_+ \wedge F^{-j} TP(Y) \wedge \mathbb{R}^{>0}_+ \to F^{-i-j} TP(X \wedge Y) \wedge \mathbb{R}^{>0}_+ \]
Filtered Monoidal Structure

A filtered approximation of the diagonal gives a map

\[E^T_{i+j-1} \to (E^T_{i-1} \times E^T) \cup (E^T \times E^T_{j-1}) \subset E^T \times E^T \]

Hence a map \((E^T, E^T_{i+j-1}) \to (E^T, E^T_{i-1}) \times (E^T, E^T_{j-1})\)

Parametrized

\[C_1(n)_+ \wedge F^{-i_1} TP(X_1) \wedge \cdots \wedge F^{-i_n} TP(X_n) \to F^{-i_1-\cdots-i_n} TP(X_1 \wedge \cdots \wedge X_n) \]

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative

\[F^{-i} TP(X) \wedge \mathbb{R}_+^{>0} \wedge F^{-j} TP(Y) \wedge \mathbb{R}_+^{>0} \to F^{-i-j} TP(X \wedge Y) \wedge \mathbb{R}_+^{>0} \]
Filtered Monoidal Structure

A filtered approximation of the diagonal gives a map
\[E^T_{i+j-1} \to (E^T_{i-1} \times E^T) \cup (E^T \times E^T_{j-1}) \subseteq E^T \times E^T \]

Hence a map \((E^T, E^T_{i+j-1}) \to (E^T, E^T_{i-1}) \times (E^T, E^T_{j-1}) \)

Parametrized
\[C_1(n)_+ \wedge F^{-i_1} TP(X_1) \wedge \cdots \wedge F^{-i_n} TP(X_n) \to F^{-i_1-\cdots-i_n} TP(X_1 \wedge \cdots \wedge X_n) \]

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative
\[F^{-i} TP(X) \wedge R_+^{\geq 0} \wedge F^{-j} TP(Y) \wedge R_+^{\geq 0} \to F^{-i-j} TP(X \wedge Y) \wedge R_+^{\geq 0} \]
Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a map

\[E_{i+j-1} \rightarrow (E_{i-1} \times ET) \cup (ET \times E_{j-1}) \subset ET \times ET \]

Hence a map \((ET, E_{i+j-1}) \rightarrow (ET, E_{i-1}) \times (ET, E_{j-1})\)

Parametrized

\[C_1(n)_+ \land F^{-i_1} TP(X_1) \land \cdots \land F^{-i_n} TP(X_n) \rightarrow F^{-i_1-\cdots-i_n} TP(X_1 \land \cdots \land X_n) \]

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative

\[F^{-i} TP(X) \land R_+^{>0} \land F^{-j} TP(Y) \land R_+^{>0} \rightarrow F^{-i-j} TP(X \land Y) \land R_+^{>0} \]

Filtered monoidal

\[TP^M(X) \land TP^M(Y) \rightarrow TP^M(X \land Y) \]
Filtered Monoidal Structure

A filtered approximation of the diagonal gives a map

\[E_{T_{i+j-1}} \to (E_{T_{i-1}} \times E_T) \cup (E_T \times E_{T_{j-1}}) \subset E_T \times E_T \]

Hence a map \((E_T, E_{T_{i+j-1}}) \to (E_T, E_{T_{i-1}}) \times (E_T, E_{T_{j-1}})\)

Parametrized

\[C_1(n)_+ \land F^{-i_1}TP(X_1) \land \cdots \land F^{-i_n}TP(X_n) \to F^{-i_1-\cdots-i_n}TP(X_1 \land \cdots \land X_n) \]

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative

\[F^{-i}TP(X) \land R_+^{>0} \land F^{-j}TP(Y) \land R_+^{>0} \to F^{-i-j}TP(X \land Y) \land R_+^{>0} \]

Filtered monoidal

\[TP^M(X) \land TP^M(Y) \to TP^M(X \land Y) \]

\[TP^M(X) \land_{TP\bar{M}(R)} TP^M(Y) \to TP^M(X \land_R Y) \]
Küneth Theorem

Filtered map \(TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y) \)

\[\implies \text{map of spectral sequences} \]

Righthand spectral sequence is Tate spectral sequence for

\[THH(X \wedge_R Y) \cong THH(X) \wedge_{THH(R)} THH(Y) \]

\(E^2 \) periodic with \(\pi_*(THH(X) \wedge_{THH(R)} THH(Y)) \) in each even column

Lefthand spectral sequence has (renumbered) \(E^2 \)-term

\[\pi_* \text{Gr}(TP(X) \wedge_{TP(R)} TP(Y)) \cong \pi_*(\text{Gr} TP(X) \wedge_{\text{Gr} TP(R)} \text{Gr} TP(Y)) \]

\(E^2 \)-term is \(\pi_* \text{Gr} TP(R) \)-module \(\implies (2, 0) \)-periodic
Künneu Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$

\implies map of spectral sequences

Righthand spectral sequence is Tate spectral sequence for

$THH(X \wedge_R Y) \cong THH(X) \wedge_{THH(R)} THH(Y)$

E^2 periodic with $\pi_*(THH(X) \wedge_{THH(R)} THH(Y))$ in each even column

Lefthand spectral sequence has (renumbered) E^2-term

$\pi_* Gr(TP(X) \wedge_{TP(R)} TP(Y)) \cong \pi_*(Gr TP(X) \wedge_{Gr TP(R)} Gr TP(Y))$

E^2-term is π_* $Gr TP(R)$-module \implies $(2, 0)$-periodic
Künneth Theorem

Filtered map \(TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y) \)

\[\implies \text{map of spectral sequences} \]

Righthand spectral sequence is Tate spectral sequence for

\[THH(X \wedge_R Y) \cong THH(X) \wedge_{THH(R)} THH(Y) \]

\(E^2 \) periodic with \(\pi_* (THH(X) \wedge_{THH(R)} THH(Y)) \) in each even column

Lefthand spectral sequence has (renumbered) \(E^2 \)-term

\[\pi_* \text{Gr}(TP(X) \wedge_{TP(R)} TP(Y)) \cong \pi_* (\text{Gr} TP(X) \wedge_{\text{Gr} TP(R)} \text{Gr} TP(Y)) \]

\(E^2 \)-term is \(\pi_* \text{Gr} TP(R) \)-module \(\implies (2, 0) \)-periodic
Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y)$

\implies map of spectral sequences

Righthand spectral sequence is Tate spectral sequence for

$THH(X \wedge_R Y) \cong THH(X) \wedge_{THH(R)} THH(Y)$

E^2 periodic with $\pi_*(THH(X) \wedge_{THH(R)} THH(Y))$ in each even column

Lefthand spectral sequence has (renumbered) E^2-term

$\pi_* \text{Gr}(TP(X) \wedge_{TP(R)} TP(Y)) \cong \pi_*(\text{Gr} TP(X) \wedge_{\text{Gr} TP(R)} \text{Gr} TP(Y))$

E^2-term is $\pi_* \text{Gr} TP(R)$-module $\implies (2, 0)$-periodic
Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$

\implies map of spectral sequences

Righthand spectral sequence is Tate spectral sequence for

$THH(X \wedge_R Y) \cong THH(X) \wedge_{THH(R)} THH(Y)$

E^2 periodic with $\pi_* (THH(X) \wedge_{THH(R)} THH(Y))$ in each even column

Lefthand spectral sequence has (renumbered) E^2-term

$\pi_* \text{Gr}(TP(X) \wedge_{TP(R)} TP(Y)) \cong \pi_* (\text{Gr} TP(X) \wedge_{\text{Gr} TP(R)} \text{Gr} TP(Y))$

E^2-term is $\pi_* \text{Gr} TP(R)$-module $\implies (2, 0)$-periodic
Künnett Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y)$

\implies map of spectral sequences

Righthand spectral sequence is Tate spectral sequence for

$$THH(X \wedge_R Y) \simeq THH(X) \wedge_{THH(R)} THH(Y)$$

E^2 periodic with $\pi_*(THH(X) \wedge_{THH(R)} THH(Y))$ in each even column

Lefthand spectral sequence has (renumbered) E^2-term

$$\pi_* \text{Gr}(TP(X) \wedge_{TP(R)} TP(Y)) \simeq \pi_*(\text{Gr} TP(X) \wedge_{\text{Gr} TP(R)} \text{Gr} TP(Y))$$

E^2-term is $\pi_* \text{Gr} TP(R)$-module \implies $(2, 0)$-periodic
Künneth Theorem

Filtered map $TP(X) \land_{TP(R)} TP(Y) \to TP(X \land_R Y)$

\implies map of spectral sequences preserving periodicity op. on E^2

Righthand spectral sequence is Tate spectral sequence for

$THH(X \land_R Y) \cong THH(X) \land_{THH(R)} THH(Y)$

E^2 periodic with $\pi_*(THH(X) \land_{THH(R)} THH(Y))$ in each even column

Lefthand spectral sequence has (renumbered) E^2-term

$\pi_* Gr(TP(X) \land_{TP(R)} TP(Y)) \cong \pi_* (Gr TP(X) \land_{Gr TP(R)} Gr TP(Y))$

E^2-term is $\pi_* Gr TP(R)$-module $\implies (2, 0)$-periodic
Künneth Theorem

Filtered map \(TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_{R} Y) \)

\[\implies \text{map of spectral sequences preserving periodicity op. on } E^2 \]

Righthand spectral sequence is Tate spectral sequence for

\[THH(X \wedge_{R} Y) \cong THH(X) \wedge_{THH(R)} THH(Y) \]

\(E^2 \) periodic with \(\pi_*(THH(X) \wedge_{THH(R)} THH(Y)) \) in each even column

Lefthand spectral sequence has (renumbered) \(E^2 \)-term

\[\pi_*(Gr(TP(X) \wedge_{TP(R)} TP(Y))) \cong \pi_*(Gr TP(X) \wedge_{Gr TP(R)} Gr TP(Y)) \]

\(E^2 \)-term is \(\pi_*\text{Gr} TP(R) \)-module \(\implies (2, 0) \)-periodic

Proposition

Map of spectral sequences is an isomorphism on \(E^2 \)
Outline of Proof of Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$ induces isomorphism of E^2-terms of spectral sequences

RHSS: Tate spectral sequence \Longrightarrow conditionally convergent.

Theorem

If $R = Hk$ and X and Y are smooth and proper, then the LHSS is conditionally convergent.
Outline of Proof of Künneth Theorem

Filtered map \(TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y) \)
induces isomorphism of \(E^2 \)-terms of spectral sequences

RHSS: Tate spectral sequence \(\to \) conditionally convergent.

Theorem

If \(R = Hk \) and \(X \) and \(Y \) are smooth and proper, then the LHSS is conditionally convergent.
Outline of Proof of Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y)$ induces isomorphism of E^2-terms of spectral sequences

RHSS: Tate spectral sequence \Rightarrow conditionally convergent.

Theorem

If $R = Hk$ and X and Y are smooth and proper, then the LHSS is conditionally convergent.
Outline of Proof of Künneth Theorem

Filtered map \(TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y) \)
induces isomorphism of \(E^2 \)-terms of spectral sequences

RHSS: Tate spectral sequence \(\implies \) conditionally convergent.

Theorem

If \(R = Hk \) and \(X \) and \(Y \) are smooth and proper, then the LHSS is conditionally convergent.

Theorem

If \(R \) is an \(E_\infty \) ring spectrum and \(A \) is a smooth and proper \(R \)-algebra, then \(THH(A) \) is a compact \(THH(R) \)-module.
Outline of Proof of Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y)$ induces isomorphism of E^2-terms of spectral sequences

RHSS: Tate spectral sequence \Longrightarrow conditionally convergent.

Theorem

If $R = \mathcal{H}k$ and X and Y are smooth and proper, then the LHSS is conditionally convergent. In fact, strongly convergent.

Theorem

If R is an E_∞ ring spectrum and A is a smooth and proper R-algebra, then $THH(A)$ is a compact $THH(R)$-module.
Outline of Proof of Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$ induces isomorphism of E^2-terms of spectral sequences

$RHSS$: Tate spectral sequence \Rightarrow conditionally convergent.

Theorem

If $R = Hk$ and X and Y are smooth and proper, then the LHSS is conditionally convergent. In fact, strongly convergent.

Theorem

If R is an E_∞ ring spectrum and A is a smooth and proper R-algebra, then $THH(A)$ is a compact $THH(R)$-module.

$TP_*(k) = \mathbb{W}k[v, v^{-1}]$ is periodic
Outline of Proof of Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$
induces isomorphism of E^2-terms of spectral sequences

RHSS: Tate spectral sequence \Longrightarrow conditionally convergent.

Theorem

If $R = Hk$ and X and Y are smooth and proper, then the LHSS is conditionally convergent. In fact, strongly convergent.

Theorem

If R is an E_∞ ring spectrum and A is a smooth and proper R-algebra, then $\text{THH}(A)$ is a compact $\text{THH}(R)$-module.

$TP_* (k) = \mathbb{W}k[v, v^{-1}]$ is periodic

$\pi_* (F^0 TP(k)) = \mathbb{W}k[v, pv^{-1}]$ has finite global dimension