A Strong Küneth Theorem for Topological Periodic Cyclic Homology

Michael A. Mandell

Indiana University

Workshop on K-Theory and Related Fields
Hausdorff Research Institute for Mathematics

June 27, 2017
Topological periodic cyclic homology (TP) is the analogue of periodic cyclic homology (HP) using THH in place of HH. If k is a finite field, then smooth and proper d.g. categories over k satisfy a strong Künneth theorem:

$$TP(X) \wedge_{TP(k)}^{L} TP(Y) \to TP(X \otimes_k Y)$$

is an isomorphism in the derived category of $TP(k)$-modules.

- Joint work with Andrew Blumberg

Outline

1. Non-commutative derived algebraic geometry
2. Introduction to TP
3. The Künneth theorem
Overview

Topological periodic cyclic homology (\(TP\)) is the analogue of periodic cyclic homology (\(HP\)) using \(THH\) in place of \(HH\). If \(k\) is a finite field, then smooth and proper d.g. categories over \(k\) satisfy a strong Künneth theorem:

\[
TP(X) \wedge_{TP(k)}^L TP(Y) \to TP(X \otimes_k Y)
\]

is an isomorphism in the derived category of \(TP(k)\)-modules.

- Joint work with Andrew Blumberg
- Preprint arXiv:1706.06846

Outline

1. Non-commutative derived algebraic geometry
2. Introduction to \(TP\)
3. The Künneth theorem
Overview

Topological periodic cyclic homology (TP) is the analogue of periodic cyclic homology (HP) using THH in place of HH. If k is a finite field, then smooth and proper d.g. categories over k satisfy a strong Künneth theorem:

$$TP(X) \wedge_{TP(k)}^L TP(Y) \to TP(X \otimes_k Y)$$

is an isomorphism in the derived category of $TP(k)$-modules.

- Joint work with Andrew Blumberg
- Preprint arXiv:1706.06846

Outline

1. Non-commutative derived algebraic geometry
2. Introduction to TP
3. The Künneth theorem
Topological periodic cyclic homology (TP) is the analogue of periodic cyclic homology (HP) using THH in place of HH. If \(k \) is a finite field, then smooth and proper d.g. categories over \(k \) satisfy a strong Künneth theorem:

\[
TP(X) \wedge_{TP(k)}^L TP(Y) \to TP(X \otimes_k Y)
\]

is an isomorphism in the derived category of \(TP(k) \)-modules.

- Joint work with Andrew Blumberg
- Preprint arXiv:1706.06846

Outline

1. Non-commutative derived algebraic geometry
2. Introduction to \(TP \)
3. The Künneth theorem
Overview

Topological periodic cyclic homology (TP) is the analogue of periodic cyclic homology (HP) using THH in place of HH. If k is a finite field, then smooth and proper d.g. categories over k satisfy a strong Künneth theorem:

$$TP(X) \wedge_{TP(k)}^L TP(Y) \rightarrow TP(X \otimes_k Y)$$

is an isomorphism in the derived category of $TP(k)$-modules.

- Joint work with Andrew Blumberg
- Preprint arXiv:1706.06846

Outline

1. Non-commutative derived algebraic geometry
2. Introduction to TP
3. The Künneth theorem
Non-commutative derived algebraic geometry

Basic objects: [small] differential graded (or spectral) categories

Equivalences: Morita equivalences

Example: \(A \sim \rightarrow \text{Mod}_A \sim \rightarrow \text{Mod}_{\text{Mod}_A}\)

Example: Tilting \(A M_B, B N_A\) with \(M \otimes^L_N N \simeq A, N \otimes^L_B M \simeq B\)

\[A \sim \rightarrow \text{Mod}_A \sim \rightarrow \text{Mod}_B \leftarrow \sim B\]

Goal: Construct/study invariants

Example: \(K\) theory of subcategory of compact objects

Example: algebraic variety \(X \leftrightarrow\) d.g. cat of perfect complexes \(\mathcal{D}^{\text{dg perf}}(X)\)

\[K(X) = K(\mathcal{D}^{\text{dg perf}}(X))\]
Non-commutative derived algebraic geometry

Basic objects: [small] differential graded (or spectral) categories

EQUIVALENCES: Morita equivalences

Example: $A \sim \text{Mod}_A \sim \text{Mod}_\text{Mod}_A$

Example: Tilting Mod_A, Mod_B with $M \otimes^L_N N \sim A$, $N \otimes^L_B M \sim B$

$$A \sim \text{Mod}_A \sim \text{Mod}_B \sim B$$

Goal: Construct/study invariants

Example: K theory of subcategory of compact objects

Example: algebraic variety $X \leftrightarrow$ d.g. cat of perfect complexes $\mathcal{D}_{\text{perf}}^{dg}(X)$

$$K(X) = K(\mathcal{D}_{\text{perf}}^{dg}(X))$$
Non-commutative derived algebraic geometry

Basic objects: [small] differential graded (or spectral) categories

Equivalences: Morita equivalences

Example: \(A \sim \rightarrow \text{Mod}_A \sim \rightarrow \text{Mod}_{\text{Mod}_A} \)

Example: Tilting \(_A M_B, _B N_A \) with \(M \otimes^L_N N \sim A, N \otimes^L_B M \sim B \)

\[A \sim \rightarrow \text{Mod}_A \sim \rightarrow \text{Mod}_B \leftarrow \sim B \]

Goal: Construct/study invariants

Example: \(K \) theory of subcategory of compact objects

Example: algebraic variety \(X \leftrightarrow \) d.g. cat of perfect complexes \(\mathcal{D}^{dg}_{\text{perf}}(X) \)

\[K(X) = K(\mathcal{D}^{dg}_{\text{perf}}(X)) \]
Non-commutative derived algebraic geometry

Basic objects: [small] differential graded (or spectral) categories

Equivalences: Morita equivalences

Example: $\tilde{A} \sim A \rightarrow \text{Mod}_A \sim \text{Mod}_{\text{Mod}_A}$

Example: Tilting $A M_B, B N_A$ with $M \otimes^L_N N \sim A, N \otimes^L_B M \sim B$

$$A \sim \text{Mod}_A \sim \text{Mod}_B \sim B$$

Goal: Construct/study invariants

Example: K theory of subcategory of compact objects

Example: algebraic variety $X \leftrightarrow$ d.g. cat of perfect complexes $D^{\text{dg perf}}(X)$

$$K(X) = K(D^{\text{dg perf}}(X))$$
Non-commutative derived algebraic geometry

Basic objects: [small] differential graded (or spectral) categories

Equivalences: Morita equivalences

Example: $A \sim \text{Mod}_A \sim \text{Mod}_{\text{Mod}_A}$

Example: Tilting $A M_B, B N_A$ with $M \otimes^L_B N \simeq A$, $N \otimes^L_B M \simeq B$

Goal: Construct/study invariants

Example: K theory of subcategory of compact objects

Example: algebraic variety $X \leftrightarrow$ d.g. cat of perfect complexes $\mathcal{D}^\text{dg}_{\text{perf}}(X)$

$$K(X) = K(\mathcal{D}^\text{dg}_{\text{perf}}(X))$$
Non-commutative derived algebraic geometry

Basic objects: [small] differential graded (or spectral) categories

Equivalences: Morita equivalences

Example: $A \xrightarrow{\sim} \text{Mod}_A \xrightarrow{\sim} \text{Mod}_{\text{Mod}_A}$

Example: Tilting $A M_B, B N_A$ with $M \otimes^L_B N \simeq A, N \otimes^L_B M \simeq B$

\[
\begin{array}{c}
A \xrightarrow{\sim} \text{Mod}_A \xrightarrow{\sim} \text{Mod}_B \xleftarrow{\sim} B \\
M \otimes^L_B \leftarrow \text{Mod}_A \\
N \otimes^L_B \text{Mod}_B
\end{array}
\]

Goal: Construct/study invariants

Example: K theory of subcategory of compact objects

Example: algebraic variety $X \leftrightarrow$ d.g. cat of perfect complexes $\mathcal{D}^\text{dg}_{\text{perf}}(X)$

\[K(X) = K(\mathcal{D}^\text{dg}_{\text{perf}}(X))\]
Non-commutative derived algebraic geometry

Basic objects: [small] differential graded (or spectral) categories

Equivalences: Morita equivalences

Example: \(A \xrightarrow{\sim} \text{Mod}_A \xrightarrow{\sim} \text{Mod}_{\text{Mod}_A} \)

Example: Tilting \(_A M_B, _B N_A \) with \(M \otimes^L_N N \simeq A, N \otimes^L_B M \simeq B \)

\[
A \xrightarrow{\sim} \text{Mod}_A \xrightarrow{\sim} \text{Mod}_B \xleftarrow{\sim} B
\]

Goal: Construct/study invariants

Example: \(K \) theory of subcategory of compact objects

Example: algebraic variety \(X \leftrightarrow \) d.g. cat of perfect complexes \(\mathcal{D}^{\text{dg perf}}(X) \)

\[
K(X) = K(\mathcal{D}^{\text{dg perf}}(X))
\]
Non-commutative derived algebraic geometry

Basic objects: [small] differential graded (or spectral) categories

Equivalences: Morita equivalences

Example: \(A \xrightarrow{\sim} \text{Mod}_A \xrightarrow{\sim} \text{Mod}_{\text{Mod}_A} \)

Example: Tilting \(A M_B, B N_A \) with \(M \otimes^L_N N \simeq A, N \otimes^L_B M \simeq B \)

\[
A \xrightarrow{\sim} \text{Mod}_A \xrightarrow{\sim} \text{Mod}_B \xleftarrow{\sim} B
\]

Goal: Construct/study invariants

Example: \(K \) theory of subcategory of compact objects

Example: algebraic variety \(X \leftrightarrow \) d.g. cat of perfect complexes \(\mathcal{D}_{\text{perf}}^\text{dg}(X) \)

\[
K(X) = K(\mathcal{D}_{\text{perf}}^\text{dg}(X))
\]
Non-commutative derived algebraic geometry

Basic objects: [small] differential graded (or spectral) categories

Equivalences: Morita equivalences

Example: \(A \xrightarrow{\sim} \text{Mod}_A \xrightarrow{\sim} \text{Mod}_A \text{Mod} \)

Example: Tilting \(A M_B, B N_A \) with \(M \otimes^L_N N \cong A, N \otimes^L_B M \cong B \)

\[
A \xrightarrow{\sim} \text{Mod}_A \xrightarrow{\sim} \text{Mod}_B \xleftarrow{\sim} B
\]

Goal: Construct/study invariants

Example: \(K \) theory of subcategory of compact objects

Example: algebraic variety \(X \leftrightarrow \) d.g. cat of perfect complexes \(\mathcal{D}_{\text{perf}}(X) \)

\[
K(X) = K(\mathcal{D}_{\text{perf}}(X))
\]
Non-commutative derived algebraic geometry

Basic objects: [small] differential graded (or spectral) categories

Equivalences: Morita equivalences

Example: $A \sim \text{Mod}_A \sim \text{Mod}_{\text{Mod}_A}$

Example: Tilting $A M_B, B N_A$ with $M \otimes_L^N N \sim A, N \otimes_B^L M \sim B$

\[
A \sim \text{Mod}_A \sim \text{Mod}_B \leftarrow B
\]

Goal: Construct/study invariants

Example: K theory of subcategory of compact objects

Example: algebraic variety $X \leftrightarrow$ d.g. cat of perfect complexes $D_{\text{dg perf}}(X)$

\[
K(X) = K(D_{\text{dg perf}}(X))
\]
Non-commutative derived algebraic geometry

How is this algebraic geometry?

Use \(\mathcal{D} = \mathcal{D}^{\text{dg}}_{\text{perf}}(X) \) for \(X \)

For reasonable \(X \), [some] properties of \(X \) equivalent to properties of \(\mathcal{D} \)

Example: \(X \) is proper over \(\text{spec} \ k \) if and only if \(\mathcal{D}(a, b) \) is a compact d.g. \(k \)-module for all \(a, b \in \mathcal{D} \). \(\left(\sum \dim H^n(\mathcal{D}(a, b)) < \infty \right) \)

Example: \(X \) is smooth over \(\text{spec} \ k \) if and only if \(\mathcal{D} \) is a compact \(\mathcal{D}^{\text{op}} \otimes_k \mathcal{D} \)-module. \((\text{RHom}_{\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}}(\mathcal{D}, -) \) commutes with \(\bigoplus \) \)

Definition

Let \(A \) be a d.g. (or spectral) \(R \)-algebra. Then \(A \) is:

- **proper** if it is compact as an \(R \)-module
- **smooth** if it is compact as an \(A^{\text{op}} \otimes_R^L A \)-module (or \(A^{\text{op}} \wedge_R^L A \)-module)
How is this algebraic geometry?

Use $\mathcal{D} = \mathcal{D}_{\text{perf}}^\text{dg}(X)$ for X

For reasonable X, [some] properties of X equivalent to properties of \mathcal{D}

Example: X is proper over $\text{spec } k$ if and only if $\mathcal{D}(a, b)$ is a compact d.g. k-module for all $a, b \in \mathcal{D}$. $(\sum \dim H^n(\mathcal{D}(a, b)) < \infty)$

Example: X is smooth over $\text{spec } k$ if and only if \mathcal{D} is a compact $\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}$-module. ($\text{RHom}_{\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}}(\mathcal{D}, -)$ commutes with \bigoplus)

Definition

Let A be a d.g. (or spectral) R-algebra. Then A is:

- **proper** if it is compact as an R-module
- **smooth** if it is compact as an $A^{\text{op}} \otimes^L_R A$-module (or $A^{\text{op}} \wedge_R^L A$-module)
Non-commutative derived algebraic geometry

How is this algebraic geometry?

Use $\mathcal{D} = \mathcal{D}^{\text{dg perf}}(X)$ for X

For reasonable X, [some] properties of X equivalent to properties of \mathcal{D}

Example: X is proper over spec k if and only if $\mathcal{D}(a, b)$ is a compact d.g. k-module for all $a, b \in \mathcal{D}$. ($\sum \dim H^n(\mathcal{D}(a, b)) < \infty$)

Example: X is smooth over spec k if and only if \mathcal{D} is a compact $\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}$-module. (RHom$_{\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}}(\mathcal{D}, -)$ commutes with \bigoplus)

Definition

Let A be a d.g. (or spectral) R-algebra. Then A is:

- **proper** if it is compact as an R-module
- **smooth** if it is compact as an $A^{\text{op}} \otimes_R^L A$-module
 (or $A^{\text{op}} \wedge_R^L A$-module)
How is this algebraic geometry?

Use $\mathcal{D} = \mathcal{D}_{\text{perf}}^{\text{dg}}(X)$ for X.

For reasonable X, [some] properties of X equivalent to properties of \mathcal{D}.

Example: X is proper over $\text{spec } k$ if and only if $\mathcal{D}(a, b)$ is a compact d.g. k-module for all $a, b \in \mathcal{D}$. ($\sum \dim H^n(\mathcal{D}(a, b)) < \infty$).

Example: X is smooth over $\text{spec } k$ if and only if \mathcal{D} is a compact $\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}$-module. ($\text{RHom}_{\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}}(\mathcal{D}, -)$ commutes with \bigoplus).

Definition

Let A be a d.g. (or spectral) R-algebra. Then A is:

- **proper** if it is compact as an R-module
- **smooth** if it is compact as an $A^{\text{op}} \otimes^L_RA$-module (or $A^{\text{op}} \wedge^L_RA$-module)
How is this algebraic geometry?

Use \(D = \mathcal{D}_{\text{perf}}(X) \) for \(X \)

For reasonable \(X \), [some] properties of \(X \) equivalent to properties of \(D \)

Example: \(X \) is proper over \(\text{spec } k \) if and only if \(D(a, b) \) is a compact d.g. \(k \)-module for all \(a, b \in D \). (\(\sum \dim H^n(D(a, b)) < \infty \))

Example: \(X \) is smooth over \(\text{spec } k \) if and only if \(D \) is a compact \(D^{\text{op}} \otimes_k D \)-module. (\(\text{RHom}_{D^{\text{op}} \otimes_k D}(D, -) \) commutes with \(\bigoplus \))

Definition

Let \(A \) be a d.g. (or spectral) \(R \)-algebra. Then \(A \) is:

- **proper** if it is compact as an \(R \)-module
- **smooth** if it is compact as an \(A^{\text{op}} \otimes_R^L A \)-module (or \(A^{\text{op}} \wedge_R^L A \)-module)
How is this algebraic geometry?

Use $\mathcal{D} = \mathcal{D}_{\text{perf}}^\text{dg}(X)$ for X

For reasonable X, [some] properties of X equivalent to properties of \mathcal{D}

Example: X is proper over $\text{spec } k$ if and only if $\mathcal{D}(a, b)$ is a compact d.g. k-module for all $a, b \in \mathcal{D}$. $(\sum \dim H^n(\mathcal{D}(a, b)) < \infty)$

Example: X is smooth over $\text{spec } k$ if and only if \mathcal{D} is a compact $\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}$-module. ($\text{RHom}_{\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}}(\mathcal{D}, -)$ commutes with \bigoplus)

Definition

Let A be a d.g. (or spectral) R-algebra. Then A is:

- proper if it is compact as an R-module
- smooth if it is compact as an $A^{\text{op}} \otimes^L_R A$-module (or $A^{\text{op}} \wedge^L_R A$-module)
How is this algebraic geometry?

Use $\mathcal{D} = \mathcal{D}_{\text{perf}}^{\text{dg}}(X)$ for X

For reasonable X, [some] properties of X equivalent to properties of \mathcal{D}

Example: X is proper over spec k if and only if $\mathcal{D}(a, b)$ is a compact d.g. k-module for all $a, b \in \mathcal{D}$. ($\sum \dim H^n(\mathcal{D}(a, b)) < \infty$)

Example: X is smooth over spec k if and only if \mathcal{D} is a compact $\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}$-module. ($R\text{Hom}_{\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}}(\mathcal{D}, -)$ commutes with \bigoplus)

Definition

Let A be a d.g. (or spectral) R-algebra. Then A is:

- *proper* if it is compact as an R-module
- *smooth* if it is compact as an $A^{\text{op}} \otimes^L_R A$-module
 (or $A^{\text{op}} \wedge^L_R A$-module)
How is this algebraic geometry?

Use $\mathcal{D} = \mathcal{D}_{\text{perf}}^{\text{dg}}(X)$ for X.

For reasonable X, [some] properties of X equivalent to properties of \mathcal{D}.

Example: X is proper over $\text{spec } k$ if and only if $\mathcal{D}(a, b)$ is a compact d.g. k-module for all $a, b \in \mathcal{D}$. $(\sum \dim H^n(\mathcal{D}(a, b)) < \infty)$

Example: X is smooth over $\text{spec } k$ if and only if \mathcal{D} is a compact $\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}$-module. ($\mathcal{R}\text{Hom}_{\mathcal{D}^{\text{op}} \otimes_k \mathcal{D}}(\mathcal{D}, -)$ commutes with \bigoplus)

Definition

Let A be a d.g. (or spectral) R-algebra. Then A is:

- **proper** if it is compact as an R-module
- **smooth** if it is compact as an $A^{\text{op}} \otimes^L_R A$-module (or $A^{\text{op}} \wedge^L_R A$-module)
Take away

For theorems in non-commutative derived algebraic geometry:

- Statements are in terms of d.g. (or spectral) categories
- Results are about algebraic varieties (and generalizations)
- Proofs often just need the case of d.g. algebras (or ring spectra)

\[\mathcal{X} = \text{P} \bigoplus_{r=0}^{m} \text{O}(-r) \sim \rightarrow \text{D}_{\text{dg perf}}(\text{P}^n) \]

\[H^{-n}(\text{End}(\mathcal{X})) \text{ is a matrix of Ext}^n \text{ groups, Ext}^n(\text{O}(\mathcal{X}), \text{O}(\mathcal{Y})) \]
Take away

For theorems in non-commutative derived algebraic geometry:

- Statements are in terms of d.g. (or spectral) categories
- Results are about algebraic varieties (and generalizations)
- Proofs often just need the case of d.g. algebras (or ring spectra)
Take away

For theorems in non-commutative derived algebraic geometry:
- Statements are in terms of d.g. (or spectral) categories
- Results are about algebraic varieties (and generalizations)
- Proofs often just need the case of d.g. algebras (or ring spectra)
Take away

For theorems in non-commutative derived algebraic geometry:

- Statements are in terms of d.g. (or spectral) categories
- Results are about algebraic varieties (and generalizations)
- Proofs often just need the case of d.g. algebras (or ring spectra)
Take away

For theorems in non-commutative derived algebraic geometry:
- Statements are in terms of d.g. (or spectral) categories
- Results are about algebraic varieties (and generalizations)
- Proofs often just need the case of d.g. algebras (or ring spectra)

Example:

\[X = \mathbb{P}^m \]

\[\text{End} \left(\bigoplus_{r=0}^{m} \mathcal{O}(-r) \right) \sim \mathcal{D}_{\text{perf}}^{\text{dg}}(\mathbb{P}^n) \]

\[H^{-n} \text{End}() \text{ is a matrix of } \text{Ext}^n \text{ groups, } \text{Ext}^n(\mathcal{O}(-j), \mathcal{O}(-i)) \]
Take away

For theorems in non-commutative derived algebraic geometry:
- Statements are in terms of d.g. (or spectral) categories
- Results are about algebraic varieties (and generalizations)
- Proofs often just need the case of d.g. algebras (or ring spectra)

Example:

\[X = \mathbb{P}^m \]

\[
\text{End} \left(\bigoplus_{r=0}^{m} \mathcal{O}(-r) \right) \cong \mathcal{D}^{dg}_{\text{perf}}(\mathbb{P}^n)
\]

\[H^{-n} \text{End}(\cdot) \text{ is a matrix of Ext}^n \text{ groups, } \text{Ext}^n(\mathcal{O}(-j), \mathcal{O}(-i)) \]
Take away

For theorems in non-commutative derived algebraic geometry:

- Statements are in terms of d.g. (or spectral) categories
- Results are about algebraic varieties (and generalizations)
- Proofs often just need the case of d.g. algebras (or ring spectra)

Example:

\[X = \mathbb{P}^m \]

\[\text{End} \left(\bigoplus_{r=0}^{m} \mathcal{O}(-r) \right) \xrightarrow{\sim} \mathcal{D}_{\text{perf}}^{\text{dg}}(\mathbb{P}^n) \]

\[H_{n} \text{End}(\cdot) \text{ is a matrix of } \text{Ext}^n \text{ groups, } \text{Ext}^n(\mathcal{O}(-j), \mathcal{O}(-i)) \]
Hochschild Homology

Cyclic bar construction

\[N_q^{cy} A = \underbrace{A \otimes \cdots \otimes A \otimes A}_{q \text{ factors}} \]

Chain complex

Cyclic structure \[\Rightarrow\] Connes’ \(B \) operator

\[B : N^{cy} A \to N^{cy} A[-1] \]
Hochschild Homology

Cyclic bar construction

\[N^\text{cy}_q A = \underbrace{A \otimes \cdots \otimes A}_{q \text{ factors}} \]

Chain complex

Cyclic structure \mapsto Connes’ B operator

\[B: N^\text{cy} A \to N^\text{cy} A[-1] \]
Hochschild Homology

Cyclic bar construction

\[N^c_y A = A \otimes \cdots \otimes A \otimes A \]

\(q \) factors

\[A \otimes \cdots \otimes A \]

\[A \]

Chain complex

Cyclic structure \(\Rightarrow \) Connes’ \(B \) operator

\[B : N^c_y A \rightarrow N^c_y A[−1] \]

Morita Invariance

Dennis-Waldhausen Argument

Tilting situation \(A M_B, B N_A \)

\[A \otimes \cdots \otimes A \]

\[N \]

\[M \]

\[B \otimes \cdots \otimes B \]
Hochschild Homology

Cyclic bar construction

\[N^\text{cy}_q A = A \otimes \cdots \otimes A \otimes A \]

\(q \) factors

Chain complex

Morita Invariance

Tilting situation \(A M_B, B N_A \)

Dennis-Waldhausen Argument

Cyclic structure \(\implies \) Connes’ \(B \) operator

\[B : N^\text{cy}_A \rightarrow N^\text{cy}_A[-1] \]
Hochschild Homology

Cyclic bar construction

\[N_q^{cy} A = A \otimes \cdots \otimes A \otimes A \]

\(q \) factors

A \otimes \cdots \otimes A

\(\otimes \)

A

Chain complex

Cyclic structure \(\iff \) Connes’ \(B \) operator

\[B : N^{cy} A \rightarrow N^{cy} A[-1] \]

Morita Invariance

Tilting situation \(A M_B, B N_A \)

Dennis-Waldhausen Argument
Hochschild Homology

Cyclic bar construction

\[N_q^{cy} A = \underbrace{A \otimes \cdots \otimes A}^{q \text{ factors}} \otimes A \]

Morita Invariance

Tilting situation \(A M_B, B N_A \)

Dennis-Waldhausen Argument

Cyclic structure \(\Rightarrow \) Connes’ \(B \) operator

\[B : N^{cy} A \to N^{cy} A[-1] \]
Hochschild Homology

Cyclic bar construction

\[N_{q}^{cy} A = A \otimes \cdots \otimes A \otimes A \]

\(q \) factors

\[A \otimes \cdots \otimes A \]

\[\otimes \quad \otimes \]

\[A \]

Chain complex

Cyclic structure \(\longrightarrow \) Connes’ \(B \) operator

\[B : N^{cy} A \rightarrow N^{cy} A[-1] \]
Hochschild Homology and Cyclic Homology

Cyclic bar construction

\[N^\text{cy}_q A = \underbrace{A \otimes \cdots \otimes A} \quad q \text{ factors} \]

Chain complex

Cyclic structure \(\Longrightarrow \) Connes’ \(B \) operator

\[B : N^\text{cy} A \rightarrow N^\text{cy} A[-1] \]
Hochschild Homology and Cyclic Homology

Cyclic bar construction

\[N_q^{cy} A = A \otimes \cdots \otimes A \otimes A \]

\(q \) factors

Construct Double Complex:

\[\cdots \]

\[\downarrow \]

\[\cdots \]

\[A \otimes \cdots \otimes A \]

\[\otimes \quad \otimes \]

\[A \]

Chain complex

Cyclic structure \(\Longrightarrow \) Connes’ \(B \) operator

\[B : N_q^{cy} A \rightarrow N_q^{cy} A[-1] \]
Hochschild Homology and Cyclic Homology

Cyclic bar construction

\[N_q^{cy} A = A \otimes \cdots \otimes A \otimes A \]

\(q \) factors

\[A \otimes \cdots \otimes A \]

\[\otimes \quad \otimes \]

\[A \]

Chain complex

Construct Double Complex:

\[\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \]

\[\bullet \quad \bullet \quad \bullet \quad \bullet \quad \cdots \]

\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]

\[\bullet \quad \bullet \quad \bullet \quad \bullet \]

\[\downarrow \quad \downarrow \quad \downarrow \]

\[\bullet \quad \bullet \]

\[\downarrow \]

\[HC \]

Cyclic structure \[\implies\] Connes’ \(B \) operator

\[B : N^{cy} A \to N^{cy} A[-1] \]
Hochschild Homology and Cyclic Homology

Cyclic bar construction

\[N_{q}^{cy} A = A \otimes \cdots \otimes A \otimes A \]

\[q \text{ factors} \]

Chain complex

Cyclic structure \(\implies\) Connes’ \(B\) operator

\[B : N^{cy} A \to N^{cy} A[-1] \]
Hochschild Homology and Cyclic Homology

Cyclic bar construction

\[N^c_y A = \underbrace{A \otimes \cdots \otimes A \otimes A}_{q \text{ factors}} \]

\[A \otimes \cdots \otimes A \]

\[\otimes \quad \otimes \]

\[A \]

Chain complex

Cyclic structure \(\Longrightarrow \) Connes’ \(B \) operator

\[B : N^c_y A \rightarrow N^c_y A[-1] \]
Cyclic bar construction (Bökstedt)

\[N_q^{cy} A = \underbrace{A \wedge \cdots \wedge A}^{q \text{ factors}} \wedge A \]

Spectrum

Cyclic structure \(\implies\) circle group action
Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

\[\mathcal{N}_q^{cy} A = \underbrace{A \wedge \cdots \wedge A}_q \wedge A \]

A \wedge \cdots \wedge A

\wedge \wedge \wedge

A

Spectrum

Cyclic structure \(\Rightarrow\) circle group action
Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

\[N^c_y A = A \wedge \cdots \wedge A \wedge A \]

\[q \text{ factors} \]

A \wedge \cdots \wedge A

\wedge \quad \wedge \quad \wedge

A

Spectrum

Cyclic structure \rightarrow circle group action
Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

\[\mathcal{N}^{cy}_q A = A \wedge \cdots \wedge A \wedge A \]

\(q \) factors

\[A \wedge \cdots \wedge A \]

\[\wedge \quad \wedge \]

\[A \]

Construction

\[\cdots \]

\[\downarrow \]

\[\cdots \]

\[\downarrow \]

\[\cdots \]

\[\downarrow \]

\[\cdots \]

Spectrum

Cyclic structure \(\rightarrow \) circle group action

HH corresponds to THH
Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

\[N_q^{cy} A = \underbrace{A \wedge \cdots \wedge A \wedge A}_q \text{ factors} \]

\[A \wedge \cdots \wedge A \wedge \cdots \wedge A \]

Spectrum

Cyclic structure \(\rightarrow \) circle group action

Construction

HH corresponds to \(THH \)

HC corresponds to \(THH^h\mathbb{T} \)
Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

\[N^c_y A = \underbrace{A \wedge \cdots \wedge A}_q \text{ factors} \wedge A \wedge \cdots \wedge A \]

Spectrum

Cyclic structure \(\longrightarrow\) circle group action

Construction

HH corresponds to \(THH \)
HN corresponds to \(THH^{hT} \)
Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

\[N^c_y A = \underbrace{A \wedge \cdots \wedge A \wedge A}_q \text{ factors} \]

\[A \wedge \cdots \wedge A \]

\[\wedge \quad \wedge \quad \wedge \]

\[A \]

Spectrum

Cyclic structure \(\rightarrow\) circle group action

Construction

\[HH \text{ corresponds to } THH \]

\[HP \text{ corresponds to } THH^{tT} \]
For a ring spectrum A, define the Topological Periodic Cyclic Homology of A by $TP(A) = THH(A)^{t\mathbb{T}}$.

Highlights

- Major player in trace method
- K-theory calculations
- Characteristic p replacement for $HP(?)$ (2014–)
- Hasse-Weil zeta function: Connes-Consani \Rightarrow Hesselholt (2011–)
- Non-commutative motives: Kontsevich, Marcolli-Tabuada
- Non-commutative homological motives \Rightarrow ???
- Realization functor / Weil cohomology theory

$\text{HP}^\ast(X) \otimes_k [t, t^{-1}] \text{HP}^\ast(Y) \to \text{HP}^\ast(X \otimes_k Y)$
Topological Periodic Cyclic Homology

Definition
For a ring spectrum \(A \), define the Topological Periodic Cyclic Homology of \(A \) by \(TP(A) = THH(A)^{t\mathbb{T}} \).

Highlights
- Major player in trace method \(K \)-theory calculations
- Characteristic \(p \) replacement for \(HP(\cdot) \)
Topological Periodic Cyclic Homology

Definition

For a ring spectrum A, define the Topological Periodic Cyclic Homology of A by $TP(A) = THH(A)^{t\mathbb{T}}$.

Highlights

- Major player in trace method K-theory calculations
- Characteristic p replacement for HP (?)
Topological Periodic Cyclic Homology

Definition
For a ring spectrum A, define the Topological Periodic Cyclic Homology of A by $TP(A) = THH(A)^{t\mathbb{T}}$.

Highlights
- Major player in trace method K-theory calculations
- Characteristic p replacement for HP (?)
Topological Periodic Cyclic Homology

Definition

For a ring spectrum A, define the Topological Periodic Cyclic Homology of A by $TP(A) = THH(A)^{t\mathbb{T}}$.

Highlights

- Major player in trace method K-theory calculations
- Characteristic p replacement for HP (?)
 - (2014–) Hasse-Weil zeta function: Connes-Consani \rightsquigarrow Hesselholt
 - (2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuada
 non-commutative homological motives \rightsquigarrow ????
Introduction to \(TP \)

Topological Periodic Cyclic Homology

Definition

For a ring spectrum \(A \), define the Topological Periodic Cyclic Homology of \(A \) by \(TP(A) = THH(A)^{t\mathbb{T}} \).

Highlights

- Major player in trace method \(K \)-theory calculations
- **Characteristic \(p \)** replacement for \(HP(\?) \)
 - (2014–) Hasse-Weil zeta function: Connes-Consani \(\rightsquigarrow \) Hesselholt
 - (2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuada
 non-commutative homological motives \(\rightsquigarrow \) ????
Topological Periodic Cyclic Homology

Definition

For a ring spectrum A, define the Topological Periodic Cyclic Homology of A by $TP(A) = THH(A)^{t\mathbb{T}}$.

Highlights

- Major player in trace method K-theory calculations
- Characteristic p replacement for HP (?)
 - (2014–) Hasse-Weil zeta function: Connes-Consani \rightsquigarrow Hesselholt
 - (2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuada

non-commutative homological motives \rightsquigarrow ???

2017 Tabuada
Topological Periodic Cyclic Homology

Definition

For a ring spectrum A, define the Topological Periodic Cyclic Homology of A by $TP(A) = THH(A)^{t\mathbb{T}}$.

Highlights

- Major player in trace method K-theory calculations
- Characteristic p replacement for HP (?)
 - (2014–) Hasse-Weil zeta function: Connes-Consani \rightsquigarrow Hesselholt
 - (2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuada

Realization functor / Weil cohomology theory

\[HP_*(X) \otimes_{k[t,t^{-1}]} HP_*(Y) \rightarrow HP_*(X \otimes_k Y) \]
Topological Periodic Cyclic Homology

Definition

For a ring spectrum \(A \), define the Topological Periodic Cyclic Homology of \(A \) by \(TP(A) = THH(A)^{t\mathbb{T}} \).

Highlights

- Major player in trace method \(K \)-theory calculations
- Characteristic \(p \) replacement for \(HP (\cdot) \)
 - (2014–) Hasse-Weil zeta function: Connes-Consani \(\rightsquigarrow \) Hesselholt
 - (2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuada

Realization functor / Weil cohomology theory

\[
HP_* (X) \otimes_{k[t,t^{-1}]} HP_* (Y) \to HP_* (X \otimes_k Y)
\]
Künneth Theorem

Theorem

Lax symmetric monoidal functor

\[
\text{TP}(X) \wedge_{\text{TP}(R)}^L \text{TP}(Y) \to \text{TP}(X \wedge_R Y)
\]

Corollary

There are short exact sequences of graded \mathbb{W}_k-modules

\[
0 \to (\text{TP}_*(X) \otimes_{\text{TP}_*(k)} \text{TP}_*(Y))_n \to \text{TP}_n(X \otimes_k Y) \to \text{Tor}_{1,n-1}^{\text{TP}_*(k)}(\text{TP}_*(X), \text{TP}_*(Y)) \to 0
\]

for all n, which split but not naturally.

Corollary

\[
\text{TP}_*(X)[1/p] \otimes_{\text{TP}_*(k)[1/p]} \text{TP}_*(Y)[1/p] \to \text{TP}_*(X \otimes_k Y)[1/p] \text{ is an isomorphism.}
\]
Künneth Theorem

Theorem

Let k be finite field. The lax symmetric monoidal functor

$$TP(X) \wedge_{TP(k)}^L TP(Y) \to TP(X \otimes_k Y)$$

is an isomorphism when X and Y are smooth and proper over k.

Corollary

There are short exact sequences of graded \mathbb{W}_k-modules

$$0 \to (TP_*(X) \otimes_{TP_*(k)} TP_*(Y))_n \to TP_n(X \otimes_k Y) \to \text{Tor}_{1,n-1}^{TP_*(k)}(TP_*(X), TP_*(Y)) \to 0$$

for all n, which split but not naturally.

Corollary

$$TP_*(X)[1/p] \otimes_{TP_*(k)[1/p]} TP_*(Y)[1/p] \to TP_*(X \otimes_k Y)[1/p]$$

is an isomorphism.
Küneth Theorem

Theorem

Let k be finite field. The lax symmetric monoidal functor

$$TP(X) \wedge_{TP(k)}^L TP(Y) \to TP(X \otimes_k Y)$$

is an isomorphism when X and Y are smooth and proper over k.

Corollary

There are short exact sequences of graded $\mathbb{W}k$-modules

$$0 \to (TP_*(X) \otimes_{TP_*(k)} TP_*(Y))_n \to TP_n(X \otimes_k Y) \to \text{Tor}_{1,n-1}^{TP_*(k)}(TP_*(X), TP_*(Y)) \to 0$$

for all n, which split but not naturally.

Corollary

$$TP_*(X)[1/p] \otimes_{TP_*(k)[1/p]} TP_*(Y)[1/p] \to TP_*(X \otimes_k Y)[1/p]$$

is an isomorphism.
Künnett Theorem

Theorem

Let k be finite field. The lax symmetric monoidal functor

$$TP(X) \wedge^L_{TP(k)} TP(Y) \to TP(X \otimes_k Y)$$

is an isomorphism when X and Y are smooth and proper over k.

Corollary

There are short exact sequences of graded W_k-modules

$$0 \to (TP_* (X) \otimes_{TP_* (k)} TP_* (Y))_n \to TP_n (X \otimes_k Y) \to \text{Tor}_{1,n-1}^{TP_* (k)} (TP_* (X), TP_* (Y)) \to 0$$

for all n, which split but not naturally.

Corollary

$$TP_* (X)[1/p] \otimes_{TP_* (k)[1/p]} TP_* (Y)[1/p] \to TP_* (X \otimes_k Y)[1/p]$$ is an isomorphism.
Künneth Theorem

Theorem

Let k be finite field. The lax symmetric monoidal functor

$$TP(X) \wedge_{TP(k)}^L TP(Y) \to TP(X \otimes_k Y)$$

is an isomorphism when X and Y are smooth and proper over k.

Corollary

There are short exact sequences of graded $\mathbb{W}k$-modules

$$0 \to (TP_*(X) \otimes_{TP_*(k)} TP_*(Y))_n \to TP_n(X \otimes_k Y) \to \text{Tor}_{1,n-1}^{TP_*(k)}(TP_*(X), TP_*(Y)) \to 0$$

for all n, which split but not naturally.

Corollary

$$TP_*(X)[1/p] \otimes_{TP_*(k)[1/p]} TP_*(Y)[1/p] \to TP_*(X \otimes_k Y)[1/p]$$

is an isomorphism.
Review of Tate Construction

\[\mathcal{E}_T \xrightarrow{E_{T+}} S^0 \xrightarrow{\sim} \mathcal{E}_T \]

Smash with \(\mathcal{Z}^{\mathcal{E}_T} \) and take fixed points

\[
(Z^{\mathcal{E}_T} \wedge E_{T+})^T \rightarrow (Z^{\mathcal{E}_T})^T \rightarrow (Z^{\mathcal{E}_T} \wedge \mathcal{E}_T)^T
\]

\[
(X^{\mathcal{E}_T} \wedge E_{T+})^T \simeq \Sigma (X^{\mathcal{E}_T})_{hT} \simeq \Sigma X_{hT} \quad \text{(Adams Isomorphism)}
\]

Definition

For \(Z \) a \(T \)-equivariant spectrum \(Z^{tT} = (Z^{\mathcal{E}_T} \wedge \mathcal{E}_T)^T \).

(Composite of derived functors.)

\[
\Sigma Z_{hT} \rightarrow Z^{hT} \rightarrow Z^{tT} \rightarrow \Sigma^2 Z_{hT}
\]

Formula

\[TP(X) = THH(X)^{tT} \]
Review of Tate Construction

\[E_T \quad E_{T^+} \to S^0 \to \widetilde{E}_T \]

Smash with \(Z^{E_T} \) and take fixed points

\[(Z^{E_T} \wedge E_{T^+})^T \to (Z^{E_T})^T \to (Z^{E_T} \wedge \widetilde{E}_T)^T \]

\[(X^{E_T} \wedge E_{T^+})^T \simeq \Sigma (X^{E_T})_{h_T} \simeq \Sigma X_{h_T} \quad \text{(Adams Isomorphism)} \]

Definition

For \(Z \) a \(T \)-equivariant spectrum \(Z^{tT} = (Z^{E_T} \wedge \widetilde{E}_T)^T \).

(Composite of derived functors.)

\[\Sigma Z_{h_T} \to Z^{h_T} \to Z^{tT} \to \Sigma^2 Z_{h_T} \]

\[TP(X) = THH(X)^{tT} \]
Review of Tate Construction

\[E_T \xrightarrow{E_{T+}} S^0 \rightarrow \tilde{E}_T \]

Smash with \(Z^{E_T} \) and take fixed points

\[(Z^{E_T} \wedge E_{T+})^T \rightarrow (Z^{E_T})^T \rightarrow (Z^{E_T} \wedge \tilde{E}_T)^T \]

\[(X^{E_T} \wedge E_{T+})^T \simeq \Sigma (X^{E_T})_{h_T} \simeq \Sigma X_{h_T} \] (Adams Isomorphism)

Definition

For \(Z \) a \(T \)-equivariant spectrum \(Z^{t_T} = (Z^{E_T} \wedge \tilde{E}_T)^T \).

(Composite of derived functors.)

\[\Sigma Z_{h_T} \rightarrow Z^{h_T} \rightarrow Z^{t_T} \rightarrow \Sigma^2 Z_{h_T} \]

\[TP(X) = THH(X)^{t_T} \]
Review of Tate Construction

\[E_T \rightarrow E_{T+} \rightarrow S^0 \rightarrow \widetilde{E}_T \]

Smash with \(Z^{E_T} \) and take fixed points:

\[
\begin{align*}
(Z^{E_T} \wedge E_{T+})^T & \rightarrow (Z^{E_T})^T \\
& \rightarrow (Z^{E_T} \wedge \widetilde{E}_T)^T
\end{align*}
\]

\[
(X^{E_T} \wedge E_{T+})^T \simeq \Sigma(X^{E_T})_{hT} \simeq \Sigma X_{hT} \quad \text{(Adams Isomorphism)}
\]

Definition

For \(Z \) a \(T \)-equivariant spectrum \(Z^{tT} = (Z^{E_T} \wedge \widetilde{E}_T)^T \).

(Composite of derived functors.)

\[
\Sigma Z_{hT} \rightarrow Z^{hT} \rightarrow Z^{tT} \rightarrow \Sigma^2 Z_{hT}
\]

\[TP(X) = THH(X)^{tT} \]
Review of Tate Construction

\[E_T \xrightarrow{E_T^+} S^0 \xrightarrow{\sim} \tilde{E}_T \]

Smash with \(Z^{E_T} \) and take fixed points

\[
(Z^{E_T} \wedge E_{T^+})^T \to (Z^{E_T})^T \to (Z^{E_T} \wedge \tilde{E}_T)^T
\]

\[
(X^{E_T} \wedge E_{T^+})^T \simeq \Sigma(X^{E_T})_{h_T} \simeq \Sigma X_{h_T} \quad \text{(Adams Isomorphism)}
\]

Definition

For \(Z \) a \(T \)-equivariant spectrum \(Z^{t_T} = (Z^{E_T} \wedge \tilde{E}_T)^T \).

(Composite of derived functors.)

\[
\Sigma Z_{h_T} \to Z^{h_T} \to Z^{t_T} \to \Sigma^2 Z_{h_T}
\]

\[TP(X) = THH(X)^{t_T} \]
Review of Tate Construction

\[ET_\mathbb{T} \quad ET_\mathbb{T}^+ \to S^0 \to \widetilde{ET}_\mathbb{T} \]

Smash with \(Z^{ET}_\mathbb{T} \) and take fixed points

\[
(Z^{ET}_\mathbb{T} \wedge ET_\mathbb{T}^+)^\mathbb{T} \to (Z^{ET}_\mathbb{T})^\mathbb{T} \to (Z^{ET}_\mathbb{T} \wedge \widetilde{ET}_\mathbb{T})^\mathbb{T}
\]

\[
(X^{ET}_\mathbb{T} \wedge ET_\mathbb{T}^+)^\mathbb{T} \cong \Sigma(X^{ET}_\mathbb{T})h_\mathbb{T} \cong \Sigma X_{h_\mathbb{T}} \quad \text{(Adams Isomorphism)}
\]

Definition

For \(Z \) a \(\mathbb{T} \)-equivariant spectrum \(Z^{t_\mathbb{T}} = (Z^{ET}_\mathbb{T} \wedge \widetilde{ET}_\mathbb{T})^\mathbb{T} \).

(Composite of derived functors.)

\[
\Sigma Z_{h_\mathbb{T}} \to Z^{h_\mathbb{T}} \to Z^{t_\mathbb{T}} \to \Sigma^2 Z_{h_\mathbb{T}}
\]

\[TP(X) = \text{THH}(X)^{t_\mathbb{T}} \]
Künneth Theorem

Review of Tate Construction

$E_T \quad E_{T+} \to S^0 \to \widetilde{E_T}$

Smash with Z^{E_T} and take fixed points

$$(Z^{E_T} \wedge E_{T+})^T \to (Z^{E_T})^T \to (Z^{E_T} \wedge \widetilde{E_T})^T$$

$$(X^{E_T} \wedge E_{T+})^T \simeq \Sigma(X^{E_T})_{hT} \simeq \Sigma X_{hT} \quad \text{(Adams Isomorphism)}$$

Definition

For Z a \mathbb{T}-equivariant spectrum $Z^{tT} = (Z^{E_T} \wedge \widetilde{E_T})^T$. (Composite of derived functors.)

$$\Sigma Z_{hT} \to Z^{hT} \to Z^{tT} \to \Sigma^2 Z_{hT}$$

$$TP(X) = THH(X)^{tT}$$
Künneth Theorem

Review of Tate Construction

\[E_T \rightarrow E_{T+} \rightarrow S^0 \rightarrow \widetilde{E}_T \]

Smash with \(Z^{E_T} \) and take fixed points

\[(Z^{E_T} \wedge E_{T+})^T \rightarrow (Z^{E_T})^T \rightarrow (Z^{E_T} \wedge \widetilde{E}_T)^T \]

\[(X^{E_T} \wedge E_{T+})^T \cong \Sigma(X^{E_T})_{h_T} \cong \Sigma X_{h_T} \] (Adams Isomorphism)

Definition

For \(Z \) a \(T \)-equivariant spectrum \(Z^{t_T} = (Z^{E_T} \wedge \widetilde{E}_T)^T \).

(Composite of derived functors.)

\[\Sigma Z_{h_T} \rightarrow Z^{h_T} \rightarrow Z^{t_T} \rightarrow \Sigma^2 Z_{h_T} \]

\[TP(X) = THH(X)^{t_T} \]
Künneth Theorem

Review of Tate Construction

\[E_{\mathbb{T}} \rightarrow E_{\mathbb{T}+} \rightarrow S^0 \rightarrow \widetilde{E_{\mathbb{T}}} \]

Smash with \(Z^{E_{\mathbb{T}}} \) and take fixed points

\[
(Z^{E_{\mathbb{T}}} \wedge E_{\mathbb{T}+})^\mathbb{T} \rightarrow (Z^{E_{\mathbb{T}}})^\mathbb{T} \rightarrow (Z^{E_{\mathbb{T}}} \wedge \widetilde{E_{\mathbb{T}}})^\mathbb{T}
\]

\[
(X^{E_{\mathbb{T}}} \wedge E_{\mathbb{T}+})^\mathbb{T} \cong \Sigma(X^{E_{\mathbb{T}}})_{h\mathbb{T}} \cong \Sigma X_{h\mathbb{T}} \quad \text{(Adams Isomorphism)}
\]

Definition

For \(Z \) a \(\mathbb{T} \)-equivariant spectrum \(Z^{t\mathbb{T}} = (Z^{E_{\mathbb{T}}} \wedge \widetilde{E_{\mathbb{T}}})^\mathbb{T} \).

(Composite of derived functors.)

\[
\Sigma(Z_{h\mathbb{T}}) \rightarrow Z^{h\mathbb{T}} \rightarrow Z^{t\mathbb{T}} \rightarrow \Sigma^2 Z_{h\mathbb{T}}
\]

\[TP(X) = THH(X)^{t\mathbb{T}} \]
The Multiplication

$$TP(X) \land TP(Y) \to TP(X \land Y)$$

$$TP(X) = (THH(X)^{ET} \land \tilde{ET})^T$$

- $\tilde{ET} \land \tilde{ET} \simeq \tilde{ET}$
- Use diagonal map $ET \to ET \times ET$
- $THH(X) \land THH(Y) \cong THH(X \land Y)$
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \widetilde{ET})^T \]

- \(\widetilde{ET} \wedge \widetilde{ET} \simeq \widetilde{ET} \)
- Use diagonal map \(ET \rightarrow ET \times ET \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)
The Multiplication

\[TP(X) \land TP(Y) \to TP(X \land Y) \]

\[TP(X) = (THH(X)^{ET} \land \tilde{ET})^T \]

- \(\tilde{ET} \land \tilde{ET} \simeq \tilde{ET} \)
- Use diagonal map \(ET \to ET \times ET \)
- \(THH(X) \land THH(Y) \cong THH(X \land Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \widetilde{ET})^T \]

- \(\widetilde{ET} \wedge \widetilde{ET} \simeq \widetilde{ET} \)
- Use diagonal map \(ET \rightarrow ET \times ET \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)
The Multiplication

\[TP(X) \land TP(Y) \rightarrow TP(X \land Y) \]

\[TP(X) = (THH(X)^{ET} \land \widetilde{ET})^T \]

- \(\widetilde{ET} \land \widetilde{ET} \cong \widetilde{ET} \)
- Use diagonal map \(ET \rightarrow ET \times ET \)
- \(THH(X) \land THH(Y) \cong THH(X \land Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \to TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \tilde{ET})^T \]

- Use diagonal map \(ET \to ET \times ET \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (\text{THH}(X)^{E_T} \wedge \tilde{E}_T)^T \]

- \(\tilde{E}_T \wedge \tilde{E}_T \cong \tilde{E}_T \)
- Use diagonal map \(E_T \rightarrow E_T \times E_T \)
- \(\text{THH}(X) \wedge \text{THH}(Y) \cong \text{THH}(X \wedge Y) \)
The Multiplication

\[TP(X) \land TP(Y) \rightarrow TP(X \land Y) \]

\[TP(X) = (THH(X)^{ET} \land \widetilde{ET})^T \]

- \(\widetilde{ET} \land \widetilde{ET} \simeq \widetilde{ET} \)
- Use diagonal map \(ET \rightarrow ET \times ET \)
- \(THH(X) \land THH(Y) \cong THH(X \land Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (\text{THH}(X)^{ET} \wedge \widetilde{ET})^T \]

- \(\widetilde{ET} \wedge \widetilde{ET} \simeq \widetilde{ET} \)

- Use diagonal map \(ET \rightarrow ET \times ET \)

- \(\text{THH}(X) \wedge \text{THH}(Y) \cong \text{THH}(X \wedge Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \widehat{ET})^T \]

- \(\widehat{ET} \wedge \widehat{ET} \cong \widehat{ET} \)
- Use diagonal map \(ET \rightarrow ET \times ET \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{\mathbb{E}_T} \wedge \mathbb{E}_T)^{\mathbb{T}} \]

- \(\mathbb{E}_T \wedge \mathbb{E}_T \approx \mathbb{E}_T \)
- Use diagonal map \(\mathbb{E}_T \rightarrow \mathbb{E}_T \times \mathbb{E}_T \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = \left(THH(X)^{E_T} \wedge \sim E_T \right)^T \]

- \[\sim E_T \wedge \sim E_T \simeq \sim E_T \]
- Use diagonal map \(E_T \rightarrow E_T \times E_T \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)
The Multiplication

\[TP(X) \land TP(Y) \to TP(X \land Y) \]

\[TP(X) = (THH(X)^E_T \land \tilde{E}_T)^T \]

- \[\tilde{E}_T \land \tilde{E}_T \simeq \tilde{E}_T \]
- Use diagonal map \(E_T \to E_T \times E_T \)
- \(THH(X) \land THH(Y) \cong THH(X \land Y) \)
The Multiplication

\[
TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y)
\]

\[
TP(X) = (THH(X)^{E_T} \wedge \tilde{E}_T)^T
\]

- \(\tilde{E}_T \wedge \tilde{E}_T \cong \tilde{E}_T\)
- Use diagonal map \(E_T \rightarrow E_T \times E_T\)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y)\)

\[
TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y)
\]
The Multiplication

\[TP(X) \wedge TP(Y) \to TP(X \wedge Y) \]

\[TP(X) = \left(THH(X)^{E_T} \wedge \tilde{E_T} \right)^T \]

- \(\tilde{E_T} \wedge \tilde{E_T} \cong \tilde{E_T} \)
- Use diagonal map \(E_T \to E_T \times E_T \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)
The Multiplication

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{ET} \wedge \tilde{ET})^T \]

- \(\tilde{ET} \wedge \tilde{ET} \simeq \tilde{ET} \)
- Use diagonal map \(ET \rightarrow ET \times ET \quad \leftarrow \text{This is coherent} \)
- \[THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \]

\[TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y) \]

\[TP(X) \wedge TP(R) \wedge TP(Y) \rightarrow TP(X \wedge R \wedge Y) \]
The Multiplication

\[TP(X) \wedge TP(Y) \to TP(X \wedge Y) \]

\[TP(X) = (THH(X)^{E_T} \wedge \tilde{E_T})^T \]

- \(\tilde{E_T} \wedge \tilde{E_T} \cong \tilde{E_T} \quad \text{← This can be made coherent} \)
- Use diagonal map \(E_T \to E_T \times E_T \quad \text{← This is coherent} \)
- \(THH(X) \wedge THH(Y) \cong THH(X \wedge Y) \)

\[TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y) \]

\[TP(X) \wedge TP(R) \wedge TP(Y) \to TP(X \wedge R \wedge Y) \]
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i/F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

$TP(X) = (\text{THH}(X)^{E_T} \land \widetilde{E_T})^T$

Simplicial filtration on E_T

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

$TP(X) = (\text{THH}(X)^{ET} \wedge \widetilde{ET})^T$

Simplicial filtration on ET

$T_+, \Sigma^2T_+, \Sigma^4T_+, \ldots$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i/F^{i-1} \cong \Sigma^{2i} THH(X)$$

$$TP(X) = (THH(X)^{ET} \wedge \tilde{ET})^T$$

Simplicial filtration on ET

$T_+, \Sigma^2T_+, \Sigma^4T_+, \ldots$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

$TP(X) = (\text{THH}(X)^{E_T} \wedge \tilde{E}_T)^T$

Simplicial filtration on E_T

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$
The Filtration

Filtration on \(TP(X) \) with associated graded

\[
F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)
\]

\[
TP(X) = (\text{THH}(X)^E_T \wedge \tilde{E}_T)^T
\]

Simplicial filtration on \(E_T \)

\[
\mathbb{T}_+, \Sigma^2 \mathbb{T}_+, \Sigma^4 \mathbb{T}_+, \ldots
\]
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} THH(X)$$

$TP(X) = (THH(X)^{E_T} \wedge \tilde{E_T})^T$

Simplicial filtration on E_T

$$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$$

$$T_+ \wedge (T/\{1\}) \wedge \Delta[1]/\partial \Delta[1]$$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

$$TP(X) = (\text{THH}(X)^{E_T} \wedge \tilde{E}_T)^T$$

Simplicial filtration on E_T

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$

$$T_+ \wedge (T \times T / (T \vee T)) \wedge \Delta[2] / \partial \Delta[2]$$

$$T \times T \times T$$

$$T \times T$$

$$T$$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

$TP(X) = (\text{THH}(X)^{ET} \wedge \widehat{ET})^T$

Simplicial filtration on ET

$\mathbb{T}_+, \Sigma^2 \mathbb{T}_+, \Sigma^4 \mathbb{T}_+, \ldots$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} THH(X)$$

$TP(X) = (THH(X)^{ET} \wedge \widetilde{ET})^T$

Simplicial filtration on ET^T / on \widetilde{ET}^T

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots$ / $S^0, \Sigma T_+, \Sigma^3 T_+, \ldots$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \cong \Sigma^{2i} \text{THH}(X)$$

$TP(X) = (\text{THH}(X)^{E_T} \wedge \tilde{E}_{T})^T$

Simplicial filtration on E_T / \tilde{E}_{T}

$T_+, \Sigma^2 T_+, \Sigma^4 T_+, \ldots / S^0, \Sigma T_+, \Sigma^3 T_+, \ldots$

Filtration on $TP(X)$:

$$F^i TP(X) = \begin{cases} (\text{THH}(X)^{E_T, E_T_{-i-1}} \wedge S^0)^T & i \leq 0 \\ (\text{THH}(X)^{E_T} \wedge \tilde{E}_{T_i})^T & i > 0 \end{cases}$$

$$F^i / F^{i-1} = \begin{cases} (\text{THH}(X)^{\Sigma^{2i} T_+})^T & i \leq 0 \\ (\text{THH}(X)^{E_T} \wedge \Sigma^{2i-1} T_+)^T & i > 0 \end{cases}$$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \THH(X)$$

$$TP(X) = (\THH(X)^{E_T} \wedge \widetilde{E_T})^T$$

Simplicial filtration on E_T / on $\widetilde{E_T}$

$\mathbb{T}_+, \Sigma^2 \mathbb{T}_+, \Sigma^4 \mathbb{T}_+, \ldots$ / $S^0, \Sigma \mathbb{T}_+, \Sigma^3 \mathbb{T}_+, \ldots$

Filtration on $TP(X)$:

$$F^i TP(X) = \begin{cases} (\THH(X)^{E_T;\mathbb{T}, \mathbb{T}^{i-1}} \wedge S^0)^T & i \leq 0 \\ (\THH(X)^{E_T} \wedge \widetilde{E_T})^T & i > 0 \end{cases}$$

$$F^i / F^{i-1} = \begin{cases} (\THH(X)^{\Sigma^{2i} \mathbb{T}_+})^T & i \leq 0 \\ (\THH(X)^{E_T} \wedge \Sigma^{2i-1} \mathbb{T}_+)^T & i > 0 \end{cases}$$

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \THH(X)$$

$$TP(X) = (\THH(X)^{E_T} \wedge \widetilde{E_T})^T$$

Simplicial filtration on E_T / on $\widetilde{E_T}$

$\mathbb{T}_+, \Sigma^2 \mathbb{T}_+, \Sigma^4 \mathbb{T}_+, \ldots$ / $S^0, \Sigma \mathbb{T}_+, \Sigma^3 \mathbb{T}_+, \ldots$

Filtration on $TP(X)$:

$$F^i TP(X) = \begin{cases} (\THH(X)^{E_T;\mathbb{T}, \mathbb{T}^{i-1}} \wedge S^0)^T & i \leq 0 \\ (\THH(X)^{E_T} \wedge \widetilde{E_T})^T & i > 0 \end{cases}$$

$$F^i / F^{i-1} = \begin{cases} (\THH(X)^{\Sigma^{2i} \mathbb{T}_+})^T & i \leq 0 \\ (\THH(X)^{E_T} \wedge \Sigma^{2i-1} \mathbb{T}_+)^T & i > 0 \end{cases}$$
The Filtration

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$$

$TP(X) = (\text{THH}(X)^{E_T} \wedge \tilde{E}_T)^T$

Simplicial filtration on E_T / on \tilde{E}_T

$\mathbb{T}_+, \Sigma^2 \mathbb{T}_+, \Sigma^4 \mathbb{T}_+, ...$ / $S^0, \Sigma \mathbb{T}_+, \Sigma^3 \mathbb{T}_+, ...$

Filtration on $TP(X)$:

$$F^i TP(X) = \begin{cases} (\text{THH}(X)^{E_T,E_T^{-i-1}} \wedge S^0)^T & i \leq 0 \\ (\text{THH}(X)^{E_T} \wedge \tilde{E}_T_i)^T & i > 0 \end{cases}$$

$$F^i / F^{i-1} = \begin{cases} (\text{THH}(X)^{\Sigma^2 i \mathbb{T}_+})^T & i \leq 0 \\ (\text{THH}(X)^{E_T} \wedge \Sigma^2 i-1 \mathbb{T}_+)^T & i > 0 \end{cases}$$
The Spectral Sequence

Filtration on $TP(X)$ with associated graded

$F^i / F^{i-1} \simeq \Sigma^{2i} \text{THH}(X)$

Spectral sequence

$E_{i,j}^1 = \pi_{i+j} \Sigma^{2i} \text{THH}(X) = \text{THH}_{j-i}(X)$

Renumber: Double filtration degree

$E_{2i,j}^2 = (E_{i,i+j}^r)^{\text{old}}, \quad d_{2r} = (d_r)^{\text{old}}$

Greenlees Tate Spectral Sequence

Conditionally convergent spectral sequence

$E_{2i,j}^2 = \text{THH}_j(X) \Longrightarrow TP_{2i+j}(X). \quad (E_{2i+1,j}^r = 0)$
The Spectral Sequence

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \cong \Sigma^{2i} THH(X)$$

Spectral sequence

$$E^{1}_{i,j} = \pi_{i+j} \Sigma^{2i} THH(X) = THH_{j-i}(X)$$

Renumber: Double filtration degree

$$E^{2r}_{2i,j} = (E^r_{i,j})^{\text{old}}, \quad d_{2r} = (d^r)^{\text{old}}$$

Greenlees Tate Spectral Sequence

Conditionally convergent spectral sequence

$$E^{2}_{2i,j} = THH_j(X) \implies TP_{2i+j}(X). \quad (E^r_{2i+1,j} = 0)$$
The Spectral Sequence

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \cong \Sigma^{2i} \text{THH}(X)$$

Spectral sequence

$$E^1_{i,j} = \pi_{i+j} \Sigma^{2i} \text{THH}(X) = \text{THH}_{j-i}(X)$$

Renumber: Double filtration degree

$$E^{2r}_{2i,j} = (E^r_{i,i+j})^{\text{old}}, \quad d_{2r} = (d_r)^{\text{old}}$$

Greenlees Tate Spectral Sequence

Conditionally convergent spectral sequence

$$E^2_{2i,j} = \text{THH}_j(X) \implies TP_{2i+j}(X). \quad (E^r_{2i+1,j} = 0)$$
The Spectral Sequence

Filtration on $TP(X)$ with associated graded

$$F^i / F^{i-1} \simeq \Sigma^{2i} THH(X)$$

Spectral sequence

$$E_{i,j}^1 = \pi_{i+j} \Sigma^{2i} THH(X) = THH_{j-i}(X)$$

Renumber: Double filtration degree

$$E_{2i,j}^{2r} = (E_{i,i+j}^r)^{\text{old}}, \quad d_{2r} = (d_r)^{\text{old}}$$

Greenlees Tate Spectral Sequence

Conditionally convergent spectral sequence

$$E_{2i,j}^2 = THH_j(X) \implies TP_{2i+j}(X). \quad (E_{2i+1,j}^r = 0)$$
Multiplicative spectral sequence:

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \text{ a filtered map} \]
Combining the Multiplication and Filtration

Multiplicative spectral sequence:

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \] a filtered map
Combining the Multiplication and Filtration

Multiplicative spectral sequence:

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \]
a filtered map

In homotopy category, easy obstruction theory cellular approximation to diagonal & multiplication.

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal (E_T \rightarrow E_T \times E_T)</td>
<td>Simplicial/cellular filt. on (E_T)</td>
</tr>
<tr>
<td>Mult. (\tilde{E}_T \wedge \tilde{E}_T \simeq \tilde{E}_T)</td>
<td>Filtration on (\tilde{E}_T)</td>
</tr>
</tbody>
</table>
Combining the Multiplication and Filtration

Multiplicative spectral sequence:

\[TP(X) \wedge TP(Y) \to TP(X \wedge Y) \]
a filtered map

In homotopy category, easy obstruction theory cellular approximation to diagonal & multiplication.

What about \(TP(X) \wedge_{TP(R)} TP(X) \to TP(X \wedge_R Y) \)?

\[\mapsto \text{map of spectral sequences} \]

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>Simplicial/cellular filt. on (E_T)</td>
</tr>
<tr>
<td>(E_T \to E_T \times E_T)</td>
<td>Filteration on (\tilde{E_T})</td>
</tr>
<tr>
<td>Mult. (\tilde{E_T} \wedge \tilde{E_T} \approx \tilde{E_T})</td>
<td></td>
</tr>
</tbody>
</table>
Multiplicative spectral sequence:

\[TP(X) \wedge TP(Y) \rightarrow TP(X \wedge Y) \] a filtered map? Coherent model?

In homotopy category, easy obstruction theory cellular approximation to diagonal & multiplication.

What about \(TP(X) \wedge_{TP(R)} TP(X) \rightarrow TP(X \wedge_R Y) \)?

\[\implies \text{map of spectral sequences} \]

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal (E_T \rightarrow E_T \times E_T)</td>
<td>Simplicial/cellular filt. on (E_T)</td>
</tr>
<tr>
<td>Mult. (\tilde{E}_T \wedge \tilde{E}_T \simeq \tilde{E}_T)</td>
<td>Filtration on (\tilde{E}_T)</td>
</tr>
</tbody>
</table>
Künneth Theorem

Filtered map \(TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y) \)

\[\rightarrow \text{map of spectral sequences} \]

Righthand spectral sequence is Tate spectral sequence for

\[THH(X \wedge_R Y) \cong THH(X) \wedge_{THH(R)} THH(Y) \]

\(E^2 \) periodic with \(\pi_\ast(THH(X) \wedge_{THH(R)} THH(Y)) \) in each even column

Lefthand spectral sequence has (renumbered) \(E^2 \)-term

\[\pi_\ast \text{Gr}(TP(X) \wedge_{TP(R)} TP(Y)) \cong \pi_\ast(\text{Gr} TP(X) \wedge_{\text{Gr} TP(R)} \text{Gr} TP(Y)) \]

\(E^2 \)-term is \(\pi_\ast \text{Gr} TP(R) \)-module \(\rightarrow (2, 0) \)-periodic
Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$

\Rightarrow map of spectral sequences

Righthand spectral sequence is Tate spectral sequence for

$$THH(X \wedge_R Y) \cong THH(X) \wedge_{THH(R)} THH(Y)$$

E^2 periodic with $\pi_*(THH(X) \wedge_{THH(R)} THH(Y))$ in each even column

Lefthand spectral sequence has (renumbered) E^2-term

$$\pi_* \text{Gr}(TP(X) \wedge_{TP(R)} TP(Y)) \cong \pi_*(\text{Gr} TP(X) \wedge_{\text{Gr} TP(R)} \text{Gr} TP(Y))$$

E^2-term is $\pi_* \text{Gr} TP(R)$-module \Rightarrow (2, 0)-periodic
Küneth Theorem

Filtered map \(\text{TP}(X) \wedge_{\text{TP}(R)} \text{TP}(Y) \rightarrow \text{TP}(X \wedge_{R} Y) \)

\[\implies \text{map of spectral sequences} \]

Righthand spectral sequence is Tate spectral sequence for

\(\text{THH}(X \wedge_{R} Y) \cong \text{THH}(X) \wedge_{\text{THH}(R)} \text{THH}(Y) \)

\(E^2 \) periodic with \(\pi_*(\text{THH}(X) \wedge_{\text{THH}(R)} \text{THH}(Y)) \) in each even column

Lefthand spectral sequence has (renumbered) \(E^2 \)-term

\(\pi_* \text{Gr}(\text{TP}(X) \wedge_{\text{TP}(R)} \text{TP}(Y)) \cong \pi_* (\text{Gr TP}(X) \wedge_{\text{Gr TP}(R)} \text{Gr TP}(Y)) \)

\(E^2 \)-term is \(\pi_* \text{Gr TP}(R) \)-module \(\implies \) (2, 0)-periodic
Künneth Theorem

Filtered map
\[TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y) \]

\[\Rightarrow \text{map of spectral sequences} \]

Righthand spectral sequence is Tate spectral sequence for
\[THH(X \wedge_R Y) \cong THH(X) \wedge_{THH(R)} THH(Y) \]
\[E^2 \text{ periodic with } \pi_* (THH(X) \wedge_{THH(R)} THH(Y)) \text{ in each even column} \]

Lefthand spectral sequence has (renumbered) \(E^2 \)-term
\[\pi_* \mathrm{Gr}(TP(X) \wedge_{TP(R)} TP(Y)) \cong \pi_* (\mathrm{Gr} TP(X) \wedge_{\mathrm{Gr} TP(R)} \mathrm{Gr} TP(Y)) \]
\[E^2 \text{-term is } \pi_* \mathrm{Gr} TP(R)\text{-module } \Rightarrow (2, 0)\text{-periodic} \]
Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$

\implies map of spectral sequences

Righthand spectral sequence is Tate spectral sequence for

$$THH(X \wedge_R Y) \cong THH(X) \wedge_{THH(R)} THH(Y)$$

E^2 periodic with $\pi_*(THH(X) \wedge_{THH(R)} THH(Y))$ in each even column

Lefthand spectral sequence has (renumbered) E^2-term

$$\pi_* \text{Gr}(TP(X) \wedge_{TP(R)} TP(Y)) \cong \pi_*(\text{Gr} TP(X) \wedge_{\text{Gr} TP(R)} \text{Gr} TP(Y))$$

E^2-term is π_* Gr $TP(R)$-module $\implies (2, 0)$-periodic
Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$

\implies map of spectral sequences

Righthand spectral sequence is Tate spectral sequence for

$THH(X \wedge_R Y) \cong THH(X) \wedge_{THH(R)} THH(Y)$

E^2 periodic with $\pi_*(THH(X) \wedge_{THH(R)} THH(Y))$ in each even column

Lefthand spectral sequence has (renumbered) E^2-term

$\pi_* \text{Gr}(TP(X) \wedge_{TP(R)} TP(Y)) \cong \pi_*(\text{Gr} TP(X) \wedge_{\text{Gr} TP(R)} \text{Gr} TP(Y))$

E^2-term is $\pi_* \text{Gr} TP(R)$-module $\implies (2, 0)$-periodic
Küneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$

\implies map of spectral sequences preserving periodicity on E^2

Righthand spectral sequence is Tate spectral sequence for

$$THH(X \wedge_R Y) \cong THH(X) \wedge_{THH(R)} THH(Y)$$

E^2 periodic with $\pi_*(THH(X) \wedge_{THH(R)} THH(Y))$ in each even column

Lefthand spectral sequence has (renumbered) E^2-term

$$\pi_* Gr(TP(X) \wedge_{TP(R)} TP(Y)) \cong \pi_*(Gr TP(X) \wedge_{Gr TP(R)} Gr TP(Y))$$

E^2-term is $\pi_* Gr TP(R)$-module \implies $(2, 0)$-periodic
Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$

\implies map of spectral sequences preserving periodicity op. on E^2

Righthand spectral sequence is Tate spectral sequence for

$$THH(X \wedge_R Y) \cong THH(X) \wedge_{THH(R)} THH(Y)$$

E^2 periodic with $\pi_*(THH(X) \wedge_{THH(R)} THH(Y))$ in each even column

Lefthand spectral sequence has (renumbered) E^2-term

$$\pi_* \text{Gr}(TP(X) \wedge_{TP(R)} TP(Y)) \cong \pi_* (\text{Gr} TP(X) \wedge_{\text{Gr} TP(R)} \text{Gr} TP(Y))$$

E^2-term is $\pi_* \text{Gr} TP(R)$-module $\implies (2, 0)$-periodic

Proposition

Map of spectral sequences is an isomorphism on E^2
Outline of Proof of Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$ induces isomorphism of E^2-terms of spectral sequences

RHSS: Tate spectral sequence \Rightarrow conditionally convergent.

Theorem

If $R = Hk$, k a perfect field of characteristic $p > 0$, and X and Y are smooth and proper over k, then the LHSS is conditionally convergent.
Outline of Proof of Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$ induces isomorphism of E^2-terms of spectral sequences

RHSS: Tate spectral sequence \Rightarrow conditionally convergent.

Theorem

If $R = Hk$, k a perfect field of characteristic $p > 0$, and X and Y are smooth and proper over k, then the LHSS is conditionally convergent.
Outline of Proof of Künneth Theorem

Filtered map \(TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y) \)
induces isomorphism of \(E^2 \)-terms of spectral sequences

RHSS: Tate spectral sequence \(\Rightarrow \) conditionally convergent.

Theorem

If \(R = Hk \), \(k \) a perfect field of characteristic \(p > 0 \), and \(X \) and \(Y \) are smooth and proper over \(k \), then the LHSS is conditionally convergent.
Outline of Proof of Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$ induces isomorphism of E^2-terms of spectral sequences

RHSS: Tate spectral sequence \Rightarrow conditionally convergent.

Theorem

If $R = Hk$, k a perfect field of characteristic $p > 0$, and X and Y are smooth and proper over k, then the LHSS is conditionally convergent.

Where do we use hypotheses?

- X smooth and proper \Rightarrow $THH(X)$ compact $THH(R)$-module.
- $TP_*(k) = \mathbb{W}k[v, v^{-1}]$ finite global dimension.
 $THH(X)$ compact \Rightarrow $TP(X)$ compact.
- Equivariantly, Hk is a compact $THH(Hk)$-module.
Outline of Proof of Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \to TP(X \wedge_R Y)$ induces isomorphism of E^2-terms of spectral sequences

RHSS: Tate spectral sequence \Longrightarrow conditionally convergent.

Theorem

If $R = Hk$, k a perfect field of characteristic $p > 0$, and X and Y are smooth and proper over k, then the LHSS is conditionally convergent.

Where do we use hypotheses?

- X smooth and proper \Longrightarrow $THH(X)$ compact $THH(R)$-module.
- $TP_\ast(k) = \mathbb{W}k[v, v^{-1}]$ finite global dimension.
 - $THH(X)$ compact \Longrightarrow $TP(X)$ compact.
- Equivariantly, Hk is a compact $THH(Hk)$-module.
Outline of Proof of Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y)$ induces isomorphism of E^2-terms of spectral sequences

RHSS: Tate spectral sequence \Rightarrow conditionally convergent.

Theorem

If $R = Hk$, k a perfect field of characteristic $p > 0$, and X and Y are smooth and proper over k, then the LHSS is conditionally convergent.

Where do we use hypotheses?

- X smooth and proper \Rightarrow $THH(X)$ compact $THH(R)$-module.
- $TP_\ast(k) = \mathbb{W}k[v, v^{-1}]$ finite global dimension.

$THH(X)$ compact \Rightarrow $TP(X)$ compact.

Equivariantly, Hk is a compact $THH(Hk)$-module.
Outline of Proof of Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y)$ induces isomorphism of E^2-terms of spectral sequences

RHSS: Tate spectral sequence \Rightarrow conditionally convergent.

Theorem

If $R = Hk$, k a perfect field of characteristic $p > 0$, and X and Y are smooth and proper over k, then the LHSS is conditionally convergent.

Where do we use hypotheses?

- X smooth and proper \Rightarrow $THH(X)$ compact $THH(R)$-module.
- $TP_*(k) = \mathbb{W}k[[\nu, \nu^{-1}]]$ finite global dimension.
 $THH(X)$ compact \Rightarrow $TP(X)$ compact.
- Equivariantly, Hk is a compact $THH(Hk)$-module.
Outline of Proof of Künneth Theorem

Filtered map $TP(X) \wedge_{TP(R)} TP(Y) \rightarrow TP(X \wedge_R Y)$ induces isomorphism of E^2-terms of spectral sequences

RHSS: Tate spectral sequence \Rightarrow conditionally convergent.

Theorem

If $R = Hk$, k a perfect field of characteristic $p > 0$, and X and Y are smooth and proper over k, then the LHSS is conditionally convergent.

Where do we use hypotheses?

- X smooth and proper $\Rightarrow THH(X)$ compact $THH(R)$-module.
- $TP_*(k) = \mathbb{W}k[v, v^{-1}]$ finite global dimension. $THH(X)$ compact $\Rightarrow TP(X)$ compact.
- Equivariantly, Hk is a compact $THH(Hk)$-module.