THE STRONG KÜNNETH THEOREM FOR TOPOLOGICAL
PERIODIC CYCLIC HOMOLOGY

ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

Abstract. Topological periodic cyclic homology (i.e., T-Tate of THH) has
the structure of a strong symmetric monoidal functor of smooth and proper
dg categories over a perfect field of finite characteristic.

Contents

Introduction 2
1. Orthogonal G-spectra and the Tate fixed points 5
2. A lax Künneth theorem for Tate fixed points 7
3. The Tate spectral sequences 9
4. Topological periodic cyclic homology 17
5. A filtration argument (Proof of Theorem A) 18
6. Filtered modules over filtered ring orthogonal spectra 21
7. Comparison of the lefthand and righthand spectral sequences
 (Proof of Theorem 5.4) 26
8. Conditional convergence of the lefthand spectral sequence
 (Proof of Lemma 5.6) 27
9. Constructing the filtered model: The positive filtration 29
10. Constructing the filtered model: The negative filtration 32
11. Constructing the filtered model and verifying the hypotheses of
 Section 5 35
12. The E^1-term of the Hesselholt-Madsen T-Tate spectral sequence 38
13. Coherence of the equivalences $ET/E_T^{2n-1} \simeq E_T^+ \wedge S^{C(1)^n}$
 (Proof of Lemma 12.6) 46
14. The strong Künneth theorem for THH 49
15. THH of smooth and proper algebras (Proof of Theorem C) 50
16. The finiteness theorem for TP (Proof of Theorem B) 55
17. Comparing monoidal models 57
18. Identification of the enveloping algebras and Bal 64
19. A topologically enriched lax symmetric monoidal fibrant replacement
 functor for equivariant orthogonal spectra (Proof of Lemma 2.1) 72
References 74

Date: July 6, 2017.
2010 Mathematics Subject Classification. Primary 19D55.
Key words and phrases. Künneth theorem, topological Hochschild homology, periodic cyclic
homology, Tate cohomology.

The first author was supported in part by NSF grant DMS-1151577.
The second author was supported in part by NSF grant DMS-1505579.

1
Introduction

Trace methods have produced powerful tools for computing algebraic K-theory. In these methods, one obtains information about the K-theory spectrum by mapping it to more computable theories such as topological Hochschild homology (THH) and topological cyclic homology (TC). As the name suggests, THH is a “topological” analogue of Hochschild homology, where tensor product is replaced with smash product and we work over the sphere spectrum instead of the integers, resulting in a theory which is the same rationally but richer at finite primes. Despite the name, TC is not the topological analogue of cyclic homology, but is more closely related to negative cyclic homology. In contrast to the algebraic setting, this construction does not provide evident topological analogues of positive or periodic cyclic homology. Since TC has been so successful for calculations in algebraic K-theory, topologists have focused comparatively little attention on such analogues until recently.

In [14], Hesselholt studied a topological analogue for periodic cyclic homology, motivated by the Deninger program [9] and the recent progress on it by Connes-Consani [8]. Deninger proposed an approach to the classical Riemann hypothesis in analogy with Deligne’s proof of Weil’s Riemann hypothesis. A basic ingredient in this approach is a suitable infinite-dimensional cohomology theory and some kind of endomorphism playing the role of the Frobenius automorphism; there is then a conjectural expression for the zeta function in terms of regularized determinants.

Using periodic cyclic homology, Connes-Consani [8, 1.1] produced a cohomology theory and expression for the product of Serre’s archimedean local factors of the Hasse-Weil zeta function of a smooth projective variety over a number field in terms of a regularized determinant for an endomorphism coming from the action of λ-operations on this cohomology theory. Hesselholt [14] defined a theory TP as the Tate \mathbb{T}-fixed points of THH. We refer to this theory as topological periodic cyclic homology as it is the topological analogue of periodic cyclic homology, though we note that it is not always itself periodic. Using TP in place of the Connes-Consani theory, Hesselholt establishes a non-archimedean version of their results, producing a regularized determinant expression for the Hasse-Weil zeta function of a smooth projective variety over a finite field.

The purpose of this paper is to prove an important structural property of TP. It is well-known to experts that TP has the natural structure of a lax symmetric monoidal functor from dg categories (or spectral categories) over a commutative ring R (or commutative S-algebra R) to the derived category of $\text{TP}(R)$-modules. In other words, TP satisfies a lax K"unneth formula. We establish a strong K"unneth formula for TP when restricted to smooth and proper dg categories over a perfect field of characteristic $p > 0$.

Theorem A (Strong K"unneth Formula). Let k be a perfect field of characteristic $p > 0$ and let \mathcal{X} and \mathcal{Y} be k-linear dg categories. The natural lax symmetric monoidal transformation

$$\text{TP}(\mathcal{X}) \wedge^L_{\text{TP}(k)} \text{TP}(\mathcal{Y}) \longrightarrow \text{TP}(\mathcal{X} \otimes_k \mathcal{Y})$$

is a weak equivalence when \mathcal{X} and \mathcal{Y} are smooth and proper over k.

Here \wedge^L denotes the derived smash product: This theorem is a derived category statement rather than a homotopy groups statement. We get a homotopy groups
statement from the Künneth spectral sequence [10, IV.4.7], which has E^2-term

$$E^2_{s,t} = \text{Tor}^{TP_*(k)}_{s,t}(TP_*(\mathcal{X}), TP_*(\mathcal{Y}))$$

and converges strongly to $\pi_*TP(\mathcal{X}) \wedge_{TP(k)} TP(\mathcal{Y})$. When k is a perfect field of characteristic p, $\pi_*TP(k) \cong \mathbb{W}k[v, v^{-1}]$, where $\mathbb{W}k$ denotes the p-typical Witt vectors, and v is an element in degree 2. In particular, $\text{Tor}^{TP_*(k)}_{s,t}$ vanishes for $s > 1$ and the spectral sequence degenerates to a short exact sequence. We state this as the following corollary.

Corollary A-1. Let k be a perfect field of characteristic $p > 0$ and let \mathcal{X} and \mathcal{Y} be smooth and proper k-linear dg categories. Then there is a natural short exact sequence

$$0 \to TP_*(\mathcal{X}) \otimes_{TP_*(k)} TP_*(\mathcal{Y}) \to TP_*(\mathcal{X} \otimes_k \mathcal{Y}) \to \text{Tor}^{TP_*(k)}_{1,*}(TP_*(\mathcal{X}), TP_*(\mathcal{Y})) \to 0.$$

This exact sequence splits, but not naturally.

We also get a strong Künneth theorem on homotopy groups after inverting p; indeed, for the Hesselholt work on TP, the statements of the main results only involve $TP_*[1/p]$. Since inverting p commutes with the smash product and $TP_*(k)[1/p]$ is a “graded field” in the sense that all graded modules over it are free (in particular, $\text{Tor}_{s,t} = 0$ for $s > 0$), we have the following immediate corollary.

Corollary A-2. Let k be a perfect field of characteristic $p > 0$ and let \mathcal{X} and \mathcal{Y} be k-linear dg categories. The natural map on homotopy groups with p inverted

$$TP_*(\mathcal{X})[1/p] \otimes_{TP_*(k)[1/p]} TP_*(\mathcal{Y})[1/p] \to TP_*(\mathcal{X} \otimes_k \mathcal{Y})[1/p]$$

is an isomorphism when \mathcal{X} and \mathcal{Y} are smooth and proper over k.

Along the way to proving Theorem A, we prove the following finiteness result for TP. This result is surprising in light of the relationship between TP and the étale cohomology of the de Rham-Witt sheaves [14, 6.8] and the extreme non-finiteness of this cohomology for supersingular $K3$ surfaces [17, §II.7.2]. (We thank Lars Hesselholt for calling our attention to this example.)

Theorem B. Let k be a perfect field of characteristic $p > 0$ and let \mathcal{X} be a smooth and proper k-linear dg category. Then $TP_*(\mathcal{X})$ is a small $TP(k)$-module; in particular $TP_*(\mathcal{X})$ is finitely generated over $TP_*(k)$.

We also prove analogues of Theorems A and B for C_p-Tate THH. For THH, as we review in Section 14, the analogue of Theorem A is well-known to hold in much wider generality (without the smooth and proper hypotheses, or the field hypothesis), but Theorem B appears to be new even in this case. Since the other cases take this case as input, we include the statement here in the generality we prove it in Section 15. We emphasize that the statement is non-equivariant.

Theorem C. Let R be a commutative ring orthogonal spectrum and \mathcal{X} a smooth and proper R-spectral category. Then $THH(\mathcal{X})$ is a small $THH(R)$-module.

Theorem C is easy to deduce from the strong Künneth theorem for THH and the interpretation of smooth and proper in terms of duality [32, 5.4.2], [2, 3.7], but we provide a simplicial argument in Section 15.

An interesting application for Theorem A comes from the theory of noncommutative motives. Periodic cyclic homology plays an important role in Kontsevich’s
ideas on noncommutative motives over a field of characteristic 0, as developed by Tabuada [31], serving as a noncommutative replacement for de Rham cohomology. The fact that $TP,[1/p]$ satisfies a Künneth formula allows TP to take the place of periodic cyclic in the setting of noncommutative motives over a perfect field of characteristic p. Notably, Tabuada [30] has recently used our Theorem A to show that the numerical Grothendieck group of a smooth and proper variety (the generalization of the group of algebraic cycles up to numerical equivalence) is finitely generated. Tabuada also applies Theorem A to establish a conjecture of Kontsevich [19] that the category of numerical noncommutative motives is abelian semi-simple, generalizing work of Janssen [18] for numerical motives.

Finally, this paper also achieves some technical results that may be of interest to homotopy theorists. Some highlights include:

- Construction of an explicit A_∞ coalgebra structure, parametrized by the little 1-cubes operad, for cellular approximations of the diagonal for the cell structure on the geometric realization of a simplicial set and the analogue for a simplicial space. (See Section 10.)
- Construction of models for the co-family universal space \tilde{EG} with action by arbitrary A_∞ or E_∞ operads (see Section 2) and a filtration equivalent to the standard filtration (as the cofiber of $EG \to S^0$) that respects the operad structure (see Section 9).
- Construction of a point-set lax symmetric monoidal model of the Tate construction (see Section 2) and a point-set lax monoidal filtered version of the Tate construction (see Section 11).
- Construction of the balanced smash product for right and left modules over A_∞ ring orthogonal spectra, and homotopical comparison for some common A_∞ operads as the operad varies. (See Section 17.)
- Study of the T-analogue of the Hesselholt-Madsen construction of the Tate spectral sequence, which (unlike the case of a finite group) differs at E^2 from the Greenlees Tate spectral sequence. (See Sections 3 and 12.)

The reader interested in homotopy theory might wonder about generalizing Theorems A and B for commutative ring spectra more general than Hk and to other closed subgroups of T beyond \{1\}, C_p, and \mathbb{T}. Besides connectivity of Hk, the proof of Theorem A depends on Theorem B and the observation in Proposition 8.1 that the canonical map $THH(Hk) \to Hk$ makes Hk a small $THH(Hk)$-module in the Borel category of equivariant $THH(Hk)$-modules. Theorem B depends on the fact that the commutative ring $THH_*(Hk)$ is Noetherian and the commutative rings $TP_*(k)$ and $\pi_*(THH(k))^{C_p}$ are a graded PID and a graded field, respectively; for the theorem, it is enough that they have finite global dimension. For other subgroups $C_p < T$ with $n > 1$, $\pi_*(THH(k))^{C_p}$ has infinite global dimension.

Acknowledgments. This project was suggested by Lars Hesselholt based on conversations with Gonçalo Tabuada; we thank both for their interest and contributions. The authors learned the terminology of “Borel equivalences” and “Borel category” in conversations with Mark Behrens. The second author thanks Ayelet Lindenstrauss and Teena Gerhardt for conversations in November 2008 related to Section 15 and specifically Remark 15.11.
1. Orthogonal G-spectra and the Tate fixed points

This section sets out some conventions for the rest of the paper and reviews certain aspects of the homotopy theory of equivariant orthogonal spectra and the construction of the Tate fixed point spectra. Throughout the paper, G denotes a compact Lie group, but starting in Section 3, we specialize to the case when G is a finite group or $G = \mathbb{T}$, the circle group of unit complex numbers.

Let \mathcal{S} denote the category of non-equivariant orthogonal spectra and \mathcal{S}^G the category of orthogonal G-spectra, which we understand to be indexed on all finite-dimensional orthogonal G-representations (at least up to isomorphism). We understand weak equivalence (when used as an unmodified specific term) to refer to the weak equivalences in the stable model structure of [23, III.4.2], or equivalently, the positive stable model structure [23, III.5.3]; the weak equivalences are the maps that induce isomorphisms on homotopy groups π_\ast^H for all $H < G$, defined by

$$\pi_\ast^H X = \operatorname{colim}_{V < U} \operatorname{colim}_{n \geq \max(0,-q)} \pi_{q+n}((\Omega^V(X(\mathbb{R}^n \oplus V)))^H).$$

In this notation, $H < G$ means H is a closed subgroup of G (not necessarily proper), U denotes a fixed infinite dimensional G-inner product space containing a representative of each finite dimensional G-representation, and $V < U$ means that V is a finite dimensional G-stable vector subspace of U. The homotopy category obtained by inverting these weak equivalences is called the stable category (or G-stable category or G-equivariant stable category) and denoted here as $\operatorname{Ho}(\mathcal{S}^G)$.

We call the objects of $\operatorname{Ho}(\mathcal{S}^G)$ spectra (or G-spectra or G-equivariant spectra).

The Tate construction is most naturally viewed as a functor not from the stable category but from a localization called the “Borel stable category”, which is formed by inverting the “Borel equivalences”.

Definition 1.1. A map of orthogonal G-spectra is a Borel equivalence if it induces an isomorphism on $\pi_\ast = \pi_\ast^{\{e\}}$ (where $\{e\}$ denotes the trivial subgroup of G). The Borel colocal model structure on orthogonal G-spectra is the \mathcal{F}-model structure of [23, IV.6.5ff] for $\mathcal{F} = \{\{e\}\}$, the Borel local model structure is the Bousfield \mathcal{F}-module structure of [23, IV.6.3ff] for $\mathcal{F} = \{\{e\}\}$, and the Borel category $\operatorname{Ho}^B(\mathcal{S}^G)$ is the homotopy category obtained by inverting the Borel equivalences.

For orthogonal G-spectra X and Y, the relationship between maps in the stable category and maps in the Borel category is given by the formula [23, IV.6.11]

$$\operatorname{Ho}^B(\mathcal{S}^G)(X,Y) \cong \operatorname{Ho}(\mathcal{S}^G)(X \wedge EG_+, Y \wedge EG_+) \cong \operatorname{Ho}(\mathcal{S}^G)(X \wedge EG_+, Y) \cong \operatorname{Ho}(\mathcal{S}^G)(X, Y^{EG}).$$

As always, EG denotes the universal space, i.e., a free G-CW space whose underlying non-equivariant space is contractible. The notation Y^{EG} denotes the derived G-spectrum of unbased non-equivariant maps from EG to Y. The last two isomorphisms indicate that the (co)localization $\operatorname{Ho}(\mathcal{S}^G) \rightarrow \operatorname{Ho}^B(\mathcal{S}^G)$ has both a left and a right adjoint: The left is modeled by the functor $(-) \wedge EG_+$ and the right is modeled by applying fibrant replacement in the stable or positive stable model structure followed by the point-set mapping G-spectrum functor $(-)^{EG}$.

The previous formula indicates that the Borel category may be viewed as the full subcategory of the G-stable category consisting of the free G-spectra. The Borel category can also be constructed as the homotopy category of G-objects in
orthogonal spectra, giving rise to the Lewis-May slogan “free G-spectra live in the trivial universe”. To be precise, let $\mathcal{S}[G]$ denote the category where an object is an orthogonal spectrum X together with an associative and unital structure map $G_+ \wedge X \to X$ and a morphism is a map of orthogonal spectra preserving the action maps. The category $\mathcal{S}[G]$ then has a model structure with weak equivalences and fibrations the underlying weak equivalences and fibrations of orthogonal spectra; the cofibrations are retracts of cell complexes built using free G-cells on spheres. Let $\kappa: \mathcal{S}[G] \to \mathcal{S}^G$ be the functor that fills in the non-trivial representations by the formula

$$\kappa X(V) := \mathcal{S}(\mathbb{R}^{\dim V}, V) \wedge \Omega^{\dim V} X(\mathbb{R}^{\dim V})$$

where $\mathcal{S}(\mathbb{R}^{\dim V}, V)$ denotes the G-space of non-equivariant linear isometries from $\mathbb{R}^{\dim V}$ to V. As observed in [23, V.1.5], κ is an equivalence of categories with inverse the functor that forgets the non-trivial representation indexes. Since the formula for the homotopy groups of an orthogonal G-spectrum in the case $H = \{e\}$ simplifies to

$$\pi_q X = \colim_{n \geq \max\{0, -q\}} \pi_{q+n} X(\mathbb{R}^n)$$

(as the map $\colim_n \pi_{q+n} X(\mathbb{R}^n) \to \colim_n \pi_{q+n} \Omega^n X(\mathbb{R}^n \oplus V)$ is an isomorphism for all $V < U$), κ sends weak equivalences to Borel equivalences and κ^{-1} sends Borel equivalences to weak equivalences. Thus, κ and κ^{-1} also induce equivalences on homotopy categories $\text{Ho}(\mathcal{S}[G]) \simeq \text{Ho}^B(\mathcal{S}^G)$ (with κ a Quillen left adjoint in both model structures in Definition 1.1).

If A is an associative ring orthogonal G-spectrum, we also have Borel local and colocal model structures on the category $\mathcal{M}\text{od}_A$ of equivariant A-modules. We call the homotopy category the Borel derived category, denoted $\text{Ho}^B(\mathcal{M}\text{od}_A)$. Just as in the base case of $A = \mathbb{S}$, we have

$$\text{Ho}^B(\mathcal{M}\text{od}_A)(X,Y) \cong \text{Ho}^B(\mathcal{M}\text{od}_A)(X \wedge EG_+, Y \wedge EG_+)$$

$$\cong \text{Ho}^B(\mathcal{M}\text{od}_A)(X \wedge EG_+, Y) \cong \text{Ho}^B(\mathcal{M}\text{od}_A)(X, Y^{EG_+}).$$

As usual, we can interpret $\text{Ho}^B(\mathcal{M}\text{od}_A)(X,Y)$ as the π_0 of a derived mapping spectrum $R^B F_A^G(X,Y)$. We can construct $R^B F_A(X,Y)$ as the derived G-fixed points of the derived mapping G-spectrum

$$RF_A(X \wedge EG_+, Y \wedge EG_+) \simeq RF_A(X \wedge EG_+, Y) \simeq RF_A(X, Y^{EG_+}),$$

or equivalently, as the homotopy G-fixed points of the derived mapping G-spectrum $RF_A(X,Y)$.

We now define the Tate fixed point functor, following [13]. In the definition, \widetilde{EG} denotes a based G-space of the homotopy type of the cofiber of the map $EG_+ \to S^0$; we will become more picky about models in later sections.

Definition 1.2. Define the Tate fixed points to be the functor

$$(-)^{\mathcal{S}^G}: \text{Ho}^B(\mathcal{S}^G) \to \text{Ho}(\mathcal{S})$$

from the Borel category to the stable category constructed as the composite of derived functors

$$X^{\mathcal{S}^G} = (X^{EG} \wedge \widetilde{EG})^G$$

where $(-)^{EG}$ is the right derived inclusion functor $\text{Ho}^B(\mathcal{S}^G) \to \text{Ho}(\mathcal{S}^G)$. We write $\pi_*^{\mathcal{S}^G} X$ for $\pi_*(X^{\mathcal{S}^G})$.
We can construct a point-set model for the Tate fixed point functor using a fibrant replacement functor R_G in the (positive) stable model structure in orthogonal G-spectra; we will be more specific about R_G in later sections.

Construction 1.3. For a chosen fibrant replacement functor R_G in the stable or positive stable model structure on orthogonal G-spectra and a chosen model for $S^0 \to \tilde{E}G$, let $T_G : \mathcal{S}_G \to \mathcal{S}$ be the composite functor

$$T_G(X) = (R_G((R_G X)^{EG} \wedge \tilde{EG}))^G.$$

As constructed, T_G sends Borel equivalences of orthogonal G-spectra to weak equivalences of orthogonal spectra and its derived functor is canonically naturally isomorphic to $(-)^G$.

Remark 1.4. Construction 1.3 gives us a lot of latitude in the choices, which we take advantage of in later sections. We pause to note that any choices give naturally weakly equivalent functors by an essentially unique natural transformation (where “essentially unique” means a contractible space of choices): The choice of fibrant replacement functor is unique up to essentially unique natural weak equivalence, the space of equivariant self-maps of EG is contractible, and the space of equivariant based self-maps of $\tilde{E}G$ is homotopy discrete with components corresponding to the identity and the trivial map.

2. A lax Künneth theorem for Tate fixed points

In this section, we prove a lax version of the Künneth theorem for the Tate fixed points (for an arbitrary compact Lie group G). These results are regarded as well-known, but the exposition of this section sets up some of the constructions and notation we need in later sections. We deduce our stable category results from stronger point-set results that we expect to be useful in future work.

Construction 1.3, our point-set model T_G for the Tate fixed point functor, left the choice of the fibrant replacement functor R_G and the model for $\tilde{E}G$ unspecified. Our strategy in this section is to make choices so that T_G becomes a lax symmetric monoidal functor. The first step is to choose R_G to be lax symmetric monoidal.

Lemma 2.1. Let G be a compact Lie group. The positive stable model structure on orthogonal G-spectra admits a topologically enriched lax symmetric monoidal fibrant replacement functor.

As the details of the construction are unimportant, we give the proof in Section 19.

We next choose a model for $\tilde{E}G$. McClure [26, §2] showed that any model of $\tilde{E}G$ has the structure of an equivariant algebra over some non-equivariant E_∞ operad (an N_∞ operad in the terminology of [5]). Turning this around, given a non-equivariant E_∞ or A_∞ operad \mathcal{O}, we would like a tractable model of $\tilde{E}G$ which is an \mathcal{O}-algebra in based G-spaces (using \wedge as the symmetric monoidal product). We need the flexibility to consider varying \mathcal{O}: in this section, using Boardman’s linear isometries operad \mathcal{L} lets us take advantage of the symmetric monoidal structures considered in [4], and in future sections we need to use the Boardman-Vogt little 1-cubes operad C_1 (and certain variants).

In the following, we take \mathcal{O} to be an E_∞ or A_∞ operad (in unbased non-equivariant spaces), and for convenience of exposition, we require \mathcal{O} to satisfy
\(\mathcal{O}(0) = \ast\). (If not, the discussion below changes in that \(I\) and \(S^0\) get replaced with \(\mathcal{O}(0) \times I\) and \(\mathcal{O}(0)++\), respectively.) For a based space \(X\), we denote by \(\mathcal{O}_X\) the free \(\mathcal{O}\)-algebra on \(X\) in based spaces, \(\mathcal{O}_X = \bigvee \mathcal{O}(n)_+ \wedge_{\Sigma_n} X^{(n)}\), where \((n)\) denotes the \(n\)th smash power.

Construction 2.2. Let \(\widetilde{E}G\mathcal{O}\) be the \(\mathcal{O}\)-algebra formed as the pushout in \(\mathcal{O}\)-algebras

\[
S^0 \leftarrow \mathcal{O}(G \times \partial I)_+ \rightarrow \mathcal{O}(G \times I)_+
\]

where the rightward map is induced by the inclusion and the leftward map is induced by the map \(G \times \partial I \rightarrow S^0\) sending \(G \times \{1\}\) to the basepoint and \(G \times \{0\}\) to the non-basepoint.

It is clear that \(\widetilde{E}G\mathcal{O}\) is non-equivariantly contractible because the basepoint lies in the unit component. Neglecting the \(\mathcal{O}\)-algebra structure, the underlying \(G\)-space has a filtration by \(G\)-equivariant cofibrations induced by homogeneous degree in the elements of \(I\),

\[
S^0 = E_0 \subset E_1 \subset \cdots \subset \widetilde{E}G\mathcal{O},
\]

with quotients

\[
E_n/E_{n-1} \cong \mathcal{O}(n)_+ \wedge_{\Sigma_n} (G^n \wedge \partial I^n).
\]

Indeed, \(E_n\) is the pushout in unbased spaces of the evident map

\[
\mathcal{O}(n) \times_{\Sigma_n} (G^n \times \partial I^n) \longrightarrow E_{n-1}
\]

and the inclusion

\[
\mathcal{O}(n) \times_{\Sigma_n} (G^n \times \partial I^n) \longrightarrow \mathcal{O}(n) \times_{\Sigma_n} (G^n \times I^n).
\]

Because \(\mathcal{O}(n)\) is \(\Sigma_n\)-free, it follows that for any nontrivial \(H < G\), the fixed point subspace \(E^H\) is exactly the subspace \(S^0\). This shows that \(\widetilde{E}G\mathcal{O}\) is a model of \(\widetilde{EG}\).

The result of this construction is that when we use a lax symmetric monoidal fibrant replacement functor to define \(T_G\), we now have a natural map

\[
\mathcal{O}(n)_+ \wedge T_G X_1 \wedge \cdots \wedge T_G X_n \longrightarrow T_G (X_1 \wedge \cdots \wedge X_n),
\]

compatible with the operadic multiplication. This map is also natural in the operad \(\mathcal{O}\).

Using \(\widetilde{E}G\mathcal{O}\) for Boardman’s linear isometries operad \(\mathcal{L}\) allows us to construct a point-set lax symmetric monoidal model of \((-) \wedge \widetilde{EG}\) as follows. We use the model of spectra given by the symmetric monoidal category of \(S\)-modules inside the weak symmetric monoidal category of \(\mathcal{L}(1)\)-spectra in orthogonal spectra constructed by Blumberg-Hill in [4] following the ideas of EKMM. Specifically, let \(J_G[\mathcal{L}(1)]\) denote the category with objects orthogonal \(G\)-spectra \(X\) equipped with an associative and unital action map \(\mathcal{L}(1)_+ \wedge X \rightarrow X\), and morphisms the maps \(X \rightarrow Y\) compatible with the action. Recall that this is a weak symmetric monoidal category, that is, a category equipped with a product which satisfies all the axioms of a symmetric monoidal category except that the unit map need not be an isomorphism. As in EKMM, there is a full symmetric monoidal subcategory of the unit objects in \(J_G[\mathcal{L}(1)]\), which we write as \(J^G_{\mathcal{BH}}\) (denoted there as \(GJ_{\mathcal{RH}}\)), the analogue of EKMM \(S\)-modules. Furthermore, [ibid., 4.8] constructs a strong symmetric monoidal functor \(J: J_G[\mathcal{L}(1)] \rightarrow J^G_{\mathcal{BH}}\) and a natural weak equivalence \(J \rightarrow \text{Id}\).

Both \(J^G[\mathcal{L}(1)]\) and \(J^G_{\mathcal{BH}}\) admit model structures with weak equivalences determined by the underlying equivalences in \(J^G\); although [4] works with the stable
equivalences, the arguments clearly hold for the Borel equivalences as well. In $\mathcal{F}^G[\mathcal{L}(1)]$, the fibrations are also determined by the forgetful functor to \mathcal{F}^G. Note that the lax symmetric monoidal fibrant replacement functor R_G on \mathcal{F}^G induces a lax symmetric monoidal fibrant replacement functor on $\mathcal{F}^G[\mathcal{L}(1)]$: as the fibrations in \mathcal{F}^G and $\mathcal{F}^G[\mathcal{L}]$ are the same, R_G is clearly fibrant, and a straightforward verification shows that R_G is lax symmetric monoidal on $\mathcal{F}^G[\mathcal{L}(1)]$.

The point of introducing this setup is that for the model $E_\mathcal{L}G$, $\Sigma^\infty E_\mathcal{L}G$ is a commutative monoid in the weak symmetric monoidal structure on $\mathcal{L}(1)$-spectra and therefore

$$J((-) \wedge E_\mathcal{L}G) \cong J((-) \wedge \Sigma^\infty E_\mathcal{L}G)$$

is a strong symmetric monoidal functor from orthogonal G-spectra to the category of $J(\Sigma^\infty E_\mathcal{L}G)$-modules in \mathcal{F}^G_{BH}. The following theorem is an immediate consequence of the construction.

Theorem 2.5. Taking R_G to be a lax symmetric monoidal fibrant replacement functor and the model $E_\mathcal{L}G$ for EG, the functor T_G of Construction 1.3 lifts to a lax symmetric monoidal functor $\mathcal{F}^G \to \mathcal{F}^G[\mathcal{L}]$ and $J \circ T_G$ has the compatible structure of a lax symmetric monoidal functor $\mathcal{F}^G \to \mathcal{F}^G_{BH}$.

Notation 2.6. For any A_∞ or E_∞ operad \mathcal{O} in unbased spaces with $\mathcal{O}(0) = \ast$, write $T^G_\mathcal{O}$ for the functor T_G of Construction 1.3 using a lax symmetric monoidal fibrant replacement functor and the model $E_\mathcal{O}G$ for EG. Write $JT^G_\mathcal{O}: \mathcal{F}^G \to \mathcal{F}^G_{BH}$ for the composite functor $J \circ T^G_\mathcal{O}$ in the previous theorem.

Note that the functor J preserves all weak equivalences and so the functor $JT^G_\mathcal{O}$ induces a lax symmetric monoidal functor from the Borel stable category to the stable category; in these terms, the previous theorem specializes to the following homotopy category statement.

Corollary 2.7. The Tate fixed point functor $(-)^G: \text{Ho}^B(\mathcal{F}^G) \to \text{Ho}(\mathcal{F})$ has a lax symmetric monoidal structure.

More generally, if A is a commutative ring orthogonal G-spectrum (or even an \mathcal{L}-algebra in orthogonal G-spectra), the previous theorem specializes to show that Tate fixed point functor restricts to a lax symmetric monoidal functor from the Borel derived category of A-modules to the derived category of $JT^G_\mathcal{O}A$-modules.

3. The Tate spectral sequences

In this section, we review the construction and properties of certain “Tate” spectral sequences computing π^G_*. We discuss two different spectral sequences, one based on the Greenlees Tate filtration of [11, §1] and another introduced by Hesselholt-Madsen in [15, §4.3]. In the case of finite group G, these spectral sequences agree from E^2 on, but in the case when $G = T$, they do not, as we explain below. The former spectral sequence is aesthetically superior, but we can prove sharper multiplicativity properties for the latter, and we need these sharper properties for the work in Section 5. We begin with the case where G is a finite group as that is conceptually simpler.

For G a finite group and P_\ast a projective $\mathbb{Z}[G]$-resolution of \mathbb{Z} in which each P_n is finitely generated, Tate cohomology is constructed by putting together P_\ast and the dual (contragradient) $\mathbb{Z}[G]$-complex $Q^\ast = \text{Hom}(P_\ast, \mathbb{Z})$. If X is a $\mathbb{Z}[G]$-module,
the Tate cohomology \(\hat{H}^G_\ast(X) \) is the homology of the \(G \)-fixed point chain complex of the chain complex

\[
(3.1) \quad \cdots \leftarrow Q^n \otimes X \leftarrow \cdots \leftarrow Q^0 \otimes X \leftarrow P_0 \otimes X \leftarrow \cdots \leftarrow P_n \otimes X \leftarrow \cdots
\]

using the augmentation \(P_0 \to \mathbb{Z} \) and its dual \(\mathbb{Z} \to Q^0 \). (Here \(Q^0 \otimes X \) sits in degree 0.) Alternatively, let \(\tilde{P}_\ast \) denote the augmented resolution: \(\tilde{P}_0 = \mathbb{Z} \), \(\tilde{P}_n = P_{n+1} \) for \(n > 0 \). The Tate cohomology can also be calculated as the homology of the \(G \)-fixed point chain complex of

\[
(3.2) \quad \text{Tot}^\oplus(\text{Hom}(P_\ast, X) \otimes \tilde{P}_\ast) \cong Q^0 \otimes \tilde{P}_\ast \otimes X
\]

(total complex formed with \(\oplus \)). The construction \((3.1) \) has a simpler form, particularly when \(G \) is a cyclic group and we take \(P_\ast \) to be the minimal resolution; for the construction \((3.2) \), it is easy to construct the cup product in Tate cohomology, using the (unique up to chain homotopy) chain maps \(P_\ast \to P_\ast \otimes P_\ast \) and \(\tilde{P}_\ast \otimes \tilde{P}_\ast \to \tilde{P}_\ast \) consistent with the maps \(\mathbb{Z} \to \mathbb{Z} \otimes \mathbb{Z} \) and \(\mathbb{Z} \otimes \mathbb{Z} \to \mathbb{Z} \), respectively.

The Greenlees Tate filtration and Hesselholt-Madsen Tate filtration do the analogous constructions in topology. For any \(G \)-CW model of \(EG \), the cellular chain complex of \(EG \) is a \(\mathbb{Z}[G] \)-resolution \(P_\ast \) of \(\mathbb{Z} \). For an orthogonal \(G \)-spectrum \(X \), we consider the tower of orthogonal \(G \)-spectra

\[
\cdots \to F(EG/EG_n, X) \to F(EG/EG_{n-1}, X) \to \cdots
\]

where \(F(-, X) \) denotes the orthogonal \(G \)-spectrum of (non-equivariant) maps and where we understand \(EG_{-1} \) as the empty set. When \(X \) is fibrant, this is a tower of fibrations whose inverse limit \(F(EG/EG, X) \) is trivial. Taking the model of \(\tilde{EG} \) given as the homotopy cofiber of the map \(EG_+ \to S^0 \),

\[
\tilde{EG} = (EG \times I) \cup_{(EG \times \partial I)} S^0
\]

we get a filtration with \(\tilde{EG}_n \) (\(n \geq 0 \)) the homotopy cofiber of \((EG_{n-1})_+ \to S^0 \) and \(\tilde{EG}_0 = S^0 \); the cellular chain complex of this filtration is \(\tilde{P}_\ast \) in the notation above.

We get the Greenlees Tate filtration \([11, \S 1]\) (cf. \([15, 4.3.6]\)) by continuing the tower above using the filtration on \(\tilde{EG} \):

\[
X^{EG} = X^{EG} \wedge \tilde{EG}_0 \to X^{EG} \wedge \tilde{EG}_1 \to \cdots \to X^{EG} \wedge \tilde{EG}_n \to \cdots.
\]

In the spectral sequence associated to this \(\mathbb{Z} \)-indexed sequence, the \(E^1 \)-term is canonically naturally isomorphic to

\[
\cdots \leftarrow Q^n \otimes \pi_\ast X \leftarrow \cdots \leftarrow Q^0 \otimes \pi_\ast X \leftarrow P_0 \otimes \pi_\ast X \leftarrow \cdots \leftarrow P_n \otimes \pi_\ast X \leftarrow \cdots
\]

precisely the complex of \((3.1) \). Because each homotopy cofiber is \(G \)-free and has \(G \)-free homotopy groups, it follows from the Adams isomorphism that the spectral sequence associated to the induced \(\mathbb{Z} \)-indexed sequence on \(G \)-fixed points has \(E^1 \)-term the complex

\[
\cdots \leftarrow (Q^0 \otimes \pi_\ast X)^G \leftarrow (P_0 \otimes \pi_\ast X)^G \leftarrow \cdots
\]

of \(G \)-fixed points, and so has \(E^2 \)-term given by \(E^2_{i,j} = \hat{H}^i_G(\pi_j X) \). Because \(\text{holim}_n F(EG/EG_{n-1}, X)^G \simeq \ast \), this spectral sequence is conditionally convergent to the colimit \(\pi^G_\ast X \) (in the sense of \([7, 5.10]\)).
Definition 3.3. Let G be a finite group and let X be an orthogonal G-spectrum. The Greenlees Tate filtration on X^tG is the \mathbb{Z}-indexed sequence
\[\cdots \longrightarrow X_{-1}^tG \longrightarrow X_0^tG \longrightarrow X_1^tG \longrightarrow \cdots, \]
where X_n^tG is the composite of derived functors
\[X_n^tG = \begin{cases} F(EG/EG_{n-1}, X)^G & \text{if } n < 0 \\ (X^{EG} \wedge \widehat{EG}_n)^G & \text{if } n \geq 0 \end{cases} \]
and the maps are induced by the maps $EG/EG_{n-1} \to EG/EG_n$ and $\widehat{EG}_n \to \widehat{EG}_{n+1}$. The Greenlees Tate spectral sequence is the associated conditionally convergent spectral sequence
\[E^2_{i,j} = \tilde{H}_G^{-i}(\pi_j X) \Longrightarrow \pi_{i+j}^G(X). \]

The Hesselholt-Madsen Tate filtration [15, §4.3] follows the pattern of (3.2). Because we use a version of this filtration for the arguments in the remainder of the paper, it is convenient to set up a point-set model for it rather than just a construction in the stable category. For an orthogonal G-spectrum X, using the chosen lax symmetric monoidal fibrant replacement functor R_G, let
\[T_G X_{i,j} = (R_G(F(EG/EG_{j-1}, R_G X) \wedge \widehat{EG}_i))^G \]
for any $i, j \geq 0$. If the filtration on EG and \widehat{EG} comes from a G-CW structure as above, then $T_G X_{0,j}$ is a point-set model for X^tG and $T_G X_{i,0}$ is a point-set model for X_i^tG in the Greenlees Tate filtration. We have canonical maps $T_G X_{i,j} \to T_G X_{i',j'}$, for any $i \leq i'$, $j \geq j'$, making $T_G X_{-,-}$ a functor from $(\mathbb{N}, \leq) \times (\mathbb{N}, \geq)$ to orthogonal G-spectra. Using the functor minus, $-$: $(\mathbb{N}, \leq) \times (\mathbb{N}, \geq) \to (\mathbb{Z}, \leq)$, for any $n \in \mathbb{Z}$, define the point-set functor
\[\tilde{T}_n X = \hocolim_{i-j \leq n} T_G X_{i,j} \]
from (\mathbb{Z}, \leq) to orthogonal spectra using the categorical bar construction as the point-set model for hocolim. Then for $n < n'$, we have an induced map $\tilde{T}_n X \to \tilde{T}_{n'} X$. The consistent system of maps $T_G X_{i,j} \to T_G X$ induce a consistent system of maps $\tilde{T}_n X \to T_G X$ and a weak equivalence $\tilde{T}_n X \to T_G X$. Hesselholt-Madsen [15, 4.3.4] proves that the E^1-term of the spectral sequence associated to this \mathbb{Z}-indexed sequence is canonically naturally isomorphic as a chain complex to
\[(\text{Tot}^B(\text{Hom}(P_*, \pi_* X) \otimes \hat{P}_*))^G \]
(specifically, $E^1_{i,j}$ is the degree i part of the total complex for $\pi_j X$), and
\[E^2_{i,j} \cong \hat{H}_G^{-i}(\pi_j X). \]
Moreover, Hesselholt-Madsen [15, 4.3.6] constructs a zigzag of maps consistent with the abutment to $\pi_*^G X$ and inducing an isomorphism on E^2 between this spectral sequence and the Greenlees Tate spectral sequence, so this spectral sequence also conditionally converges to the colimit $\pi_*^G X$.

Definition 3.6. Let G be a finite group and let X be an orthogonal G-spectrum. The Hesselholt-Madsen Tate filtration on X^tG is the \mathbb{Z}-indexed sequence
\[\cdots \longrightarrow \tilde{T}_{-1} X \longrightarrow \tilde{T}_0 X \longrightarrow \tilde{T}_1 X \longrightarrow \cdots, \]
constructed in the previous paragraph. The **Hesselholt-Madsen Tate spectral sequence** is the associated conditionally convergent spectral sequence whose E^1-term is

$$E^1_{i,j} = (\text{Tot}^\oplus(\text{Hom}(P_\ast, \pi_j X) \otimes \tilde{P}_\ast)_i)^G$$

(for P_\ast the cellular chain complex of EG, a locally finite free $\mathbb{Z}[G]$-resolution of \mathbb{Z}); it is isomorphic to the Greenlees Tate spectral sequence from E^2 onward.

As constructed, the Hesselholt-Madsen Tate filtration is a filtration in the traditional sense of $\text{colim}_n \bar{T}_n X \xrightarrow{\sim} X^G$. Recall that a map $f: A \to B$ in any topologically enriched category is called an h-cofibration when it satisfies the **homotopy extension property**: Given a map $g: B \to C$, a homotopy of $g \circ f: A \to C$ may be extended to a homotopy of $g: B \to C$. For orthogonal spectra, this is equivalent to the map

$$B \cup_{A \wedge \{0\}_+} A \wedge I_+ \to B \wedge I_+$$

admitting a retraction, and so h-cofibrations are preserved by many point-set constructions including smash product and gluing. They also have important homotopy colimit properties including:

- If $A \to B$ is an h-cofibration of orthogonal spectra and $A \to B$ is any map of orthogonal spectra, then the pushout $B \cup_A C$ represents the homotopy pushout (left derived functor of pushout). In particular, the quotient B/A represents the left derived quotient, the homotopy cofiber in the stable category.
- If $A_0 \to A_1 \to \cdots$ is a system of h-cofibrations of orthogonal spectra, then the colimit represents the homotopy colimit.

It is well-known and straightforward to prove that the categorical bar construction model of the homotopy colimit has the property that the inclusion of a subcategory induces an h-cofibration on homotopy colimits. In the particular case of the Hesselholt-Madsen Tate filtration, this is the following observation.

Proposition 3.7. The maps $\bar{T}_n X \to \bar{T}_{n+1} X$ in the point-set model of the Hesselholt-Madsen Tate filtration above are h-cofibrations.

Technically, both the filtrations and the E^1-terms of the spectral sequences in Definitions 3.3 and 3.6 depend on the choice of G-CW structure on EG. While it is tempting to use one that gives the minimal resolution, we will use the G-CW structure on EG coming from the standard two-sided bar construction model: We use the model of EG constructed as the geometric realization of the simplicial G-space

$$B_n(G, G, \ast) = G \times (G^n) \times \ast$$

with the usual face and degeneracy maps (induced by multiplication/projection and by inclusion of the unit, respectively) and the G-action on the lefthand factor. The geometric realization filtration is evidently the cellular filtration of a G-CW structure. The following two lemmas are well-known but in particular follow from the more delicate study of the structure we perform in Sections 9 and 10.

Lemma 3.8. For the standard bar construction model of EG, the diagonal map $EG \to EG \times EG$ admits an equivariant cellular approximation that is homotopy coassociative and homotopy counital through equivariant cellular maps.
Lemma 3.9. For the standard bar construction model of EG, the space \widetilde{EG} admits a pairing $EG \wedge \widetilde{EG} \to \widetilde{EG}$ that is equivariant and filtered and is homotopy unital and associative though equivariant filtered maps.

Since the space of equivariant maps $\widetilde{EG} \wedge \widetilde{EG} \to \widetilde{EG}$ is homotopy discrete with components corresponding to the trivial map and a weak equivalence, the multiplication on \widetilde{EG} in Lemma 3.9 is compatible with the multiplication constructed on the models in Section 2. In particular, the maps in the previous two lemmas induce the same pairing in the stable category $T_G(X \wedge^h T_G(Y) \to T_G(X \wedge^h Y)$ as Corollary 2.7.

We can use the preceding two lemmas to give the Hesselholt-Madsen Tate spectral sequence a natural lax monoidal structure starting at the E^1-term. The equivariant cellular model of the diagonal map $EG \to EG \times EG$ induces equivariant maps

$$EG_{n-1} \to (EG_{i-1} \times EG) \cup (EG \times EG_{j-1}) \subset EG \times EG$$

for $i + j = n$, which in turn induce equivariant maps

$$EG/EG_{i+j-1} \to (EG \times EG)/((EG_{i-1} \times EG) \cup (EG \times EG_{j-1}))$$

$$\cong (EG/EG_{i-1}) \wedge (EG/EG_{j-1})$$

and equivariant maps

$$F(EG/EG_{i-1}, R_G X) \wedge F(EG/EG_{j-1}, R_G Y)$$

$$\to F(EG/EG_{i-1} \wedge EG/EG_{j-1}, R_G X \wedge R_G Y)$$

$$\to F(EG/EG_{i+j-1}, R_G (X \wedge Y)).$$

Likewise the equivariant cellular model for the multiplication $\widetilde{EG} \wedge \widetilde{EG} \to \widetilde{EG}$ induces

$$(X \wedge \widetilde{EG}_i) \wedge (Y \wedge \widetilde{EG}_j) \to (X \wedge Y) \wedge \widetilde{EG}_{i+j}.$$

Returning to T_G, we then obtain natural maps

$$T_G X_{i,j} \wedge T_G Y_{i',j'} \to T_G (X \wedge Y)_{i+i',j+j'}.$$

These are functorial in i, i', j, j' and define maps on the Hesselholt-Madsen Tate filtration

$$\bar{T}X_m \wedge \bar{T}Y_n \to \bar{T}(X \wedge Y)_{m+n},$$

respecting the $(\mathbb{N}, \leq) \times (\mathbb{N}, \leq)$-structure on both sides. This in turn induces a pairing

$$(3.10) \quad E^1_{i,s}(X) \otimes E^1_{i,s}(Y) \to E^1_{i,s}(X \wedge^h Y)$$

converging to the standard pairing on π_*^{tG}. The homotopy coassociativity of EG and homotopy associativity of \widetilde{EG} then give us filtered homotopies between the two maps

$$\bar{T}W_{\ell} \wedge \bar{T}X_m \wedge \bar{T}Y_n \to \bar{T}(W \wedge X \wedge Y)_{\ell+m+n}$$

and so both associations induce the same map

$$E^1_{i,s}(W) \otimes E^1_{i,s}(X) \otimes E^1_{i,s}(Y) \to E^1_{i,s}(W \wedge^h X \wedge^h Y).$$

Similar observations apply to the unit using the canonical map $\mathbb{S} \to T_G \mathbb{S}_{0,0}$. Hesselholt-Madsen [15, 4.3.5] shows that such a pairing induces the usual pairing on Tate cohomology on the E^2-term.
We can describe this pairing algebraically as follows. Lemma 3.8 endows the resolution P_\ast with an equivariant coassociative and counital comultiplication $P_\ast \to P_\ast \otimes P_\ast$ and Lemma 3.9 endows \tilde{P} with an equivariant differential graded algebra structure. In fact, for our construction in Section 10, the coalgebra structure on P_\ast is induced by the Alexander-Whitney map.

Notation 3.11. Let HM_\ast be the differential graded algebra $(\text{Tot}^\oplus (P_\ast, \mathbb{Z}) \otimes \tilde{P})^G$, where P_\ast denotes the cellular chain complex of the standard bar construction model of EG and where the multiplicity is induced by Lemmas 3.8 and 3.9 and the unit by the augmentation $P_0 \to \mathbb{Z}$ and isomorphism $\mathbb{Z} \to \tilde{P}_0$. Let $HM_{\ast, \ast}$ be the bigraded ring which is HM_\ast concentrated in degree 0 in the second grading (the internal grading).

The pairing on E^1-terms (3.10) makes the E^1-term for S into a differential graded algebra, which acts on both sides on the E^1-term for any orthogonal G-spectrum. By the formula for the E^1-term in Definition 3.6, we see that as a bigraded ring, the E^1-term for S is $HM_\ast \otimes \pi_\ast S$. In particular, the E^1-term for every orthogonal G-spectrum is naturally a bimodule over $HM_{\ast, \ast}$.

Using the fact that $P_0 = \mathbb{Z}[G]$ and $\tilde{P}_0 = \mathbb{Z}$, we get a natural map

$$\pi_\ast X \to (\text{Hom}(P_0, \pi_\ast X) \otimes \tilde{P}_0)^G \to E^1_{0, \ast}(X)$$

where $x \in \pi_j X$ goes to the unique equivariant function $P_0 \to \pi_j X$ sending 1 to x. It is easy to see that this is a monoidal natural transformation. The following proposition is then clear from inspection of the multiplication.

Proposition 3.12. For any orthogonal G-spectrum X, the E^1-term of the Hesselholt-Madsen Tate spectral sequence is a bimodule over $HM_{\ast, \ast}$. The map of left modules from $HM_{\ast, \ast} \otimes \pi_\ast X$ to the E^1-term for X is a map of $HM_{\ast, \ast}$-bimodules and an isomorphism.

Regarding $HM_{\ast, \ast} \otimes \pi_\ast(-)$ as a functor from G-spectra to $HM_{\ast, \ast}$-bimodules, the unit of $HM_{\ast, \ast} \otimes \pi_\ast S$ and the pairing

$$(HM_{\ast, \ast} \otimes \pi_\ast(X)) \otimes (HM_{\ast, \ast} \otimes \pi_\ast(Y)) \to HM_{\ast, \ast} \otimes \pi_\ast(X \wedge Y)$$

induced by the multiplication of $HM_{\ast, \ast}$ and the usual pairing on π_\ast makes $HM_{\ast, \ast} \otimes \pi_\ast(-)$ into a lax monoidal functor. The isomorphism of the previous proposition is then a monoidal natural transformation from this functor to the E^1-term of the Hesselholt-Madsen spectral sequence.

We now turn to the case of the circle group T. We write $\mathbb{C}(1)$ for \mathbb{C} with the standard action of \mathbb{T} as the group of unit complex numbers, $S(\mathbb{C}(1)^n)$ for the unit sphere in $\mathbb{C}(1)^n$, and $S^{\mathbb{C}(1)^n}$ for the one-point compactification of $\mathbb{C}(1)^n$. When working in the T-equivariant stable category, we write $S^{\mathbb{C}(1)}$ for the suspension spectrum of $S^{\mathbb{C}(1)^n}$ for $n \in \mathbb{N}$, and we extend this notation to representation spheres $S^{\mathbb{C}(1)}$ for all $n \in \mathbb{Z}$. We have the standard bar construction model for ET, which comes with a filtration from geometric realization, but to better match the numbering in the finite group case, we define $ET_{2n+1} = ET_{2n}$ and let ET_{2n} be the geometric realization n-skeleton; we use the corresponding numbering for the filtration on $\tilde{ET}_{\mathbb{T}}$. In this numbering, there are well-known \mathbb{T}-equivariant homotopy equivalences

$$ET_{2n} \simeq S(\mathbb{C}(1)^n), \quad \tilde{ET}_{2n} \simeq S^{\mathbb{C}(1)^n}$$
as well as \mathbb{T}-equivariant homotopy equivalences

$$ET/ET_{2n-1} = ET/ET_{2n-2} \simeq ET_+ \wedge S^{C(1)^n}.$$

These \mathbb{T}-equivariant homotopy equivalences give us natural isomorphisms in the \mathbb{T}-equivariant stable category

$$X^{ET/ET_{2n-1}} \simeq X^{ET} \wedge \mathbb{L} S^{-nC(1)}$$

and

$$X^{ET} \wedge \overline{ET}_{2n} \simeq X^{ET} \wedge \mathbb{L} S^n C(1).$$

The Greenlees Tate filtration is then

$$\cdots \to (X^{ET} \wedge \mathbb{L} S^{-nC(1)})^T \to \cdots \to (X^{ET} \wedge \mathbb{L} S^{-C(1)})^T \to (X^{ET})^T \to \cdots$$

$$\cdots \to (X^{ET} \wedge \mathbb{L} S^C(1))^T \to \cdots \to (X^{ET} \wedge \mathbb{L} S^n C(1))^T \to \cdots$$

(even indices only displayed, odd indices equal to previous even index, with $(X^{ET})^T$ in index 0). Using the identification of the quotient $S^{C(1)}/S^0$ as $\mathbb{T}_+ \wedge S^1$, the associated graded spectra are

$$(\mathbb{T}_+ \wedge X^{ET} \wedge \mathbb{L} S^{(n-1)C(1)} \wedge S^1)^T \simeq (\mathbb{T}_+ \wedge \Sigma^{2n-1}X)^T \simeq \Sigma^{2n}X,$$

where the last weak equivalence is the Adams isomorphism. The Greenlees Tate spectral sequence is the spectral sequence associated to the \mathbb{Z}-indexed Greenlees Tate filtration (3.13). It has

$$E_{i,j}^{1} = E_{i,j}^{2} = \pi_jX \Longrightarrow \pi_i^{\mathbb{T}}X,$$

conditionally converging to the colimit $\pi_i^{\mathbb{T}}X$. (In general $E^{2r-1} = E^{2r}$ for all r since the filtration is concentrated in even indices.) Moreover, because the associative and commutative pairing (in the equivariant stable homotopy category)

$$S^{mC(1)} \wedge \mathbb{L} S^{nC(1)} \xrightarrow{\simeq} S^{(m+n)C(1)}$$

is compatible with the maps in the Greenlees Tate filtration, the Greenlees Tate spectral sequence has a natural associative and unital pairing on E^1 compatible with the pairing on $\pi_*^{\mathbb{T}}$. In terms of the description of the E^1-term in (3.14), the pairing on E^1 is induced by $\pi_*X \otimes \pi_*Y \to \pi_*(X \wedge \mathbb{L} Y)$.

Although the Greenlees Tate filtration and Greenlees Tate spectral sequence are ideal for many purposes, we have not succeeded in making the pairing coherent enough for the argument in Section 5. For that argument we work with the Hesselholt-Madsen filtration, which does not have as a clean a spectral sequence for $G = \mathbb{T}$; in particular it does not agree at E^2 with the Greenlees Tate spectral sequence. We construct a point-set model for the Hesselholt-Madsen filtration exactly as in Definition 3.6, except using the doubled indexing for the filtration on ET and \overline{ET} as in the preceding paragraph.

Definition 3.15. For $G = \mathbb{T}$, the Hesselholt-Madsen Tate filtration is the filtration by h-cofibrations

$$\cdots \to \top_1X \to \top_0X \to \top_1X \to \cdots$$

where $\top_nX = \text{hocolim}_{i \leq n} T_{\mathbb{T}}X_{i,j}$ for

$$T_{\mathbb{T}}X_{i,j} = (R_{\mathbb{T}}(F(ET/ET_{j-1}, R_{\mathbb{T}}X) \wedge \overline{ET}_i))^{\mathbb{T}}.$$

The Hesselholt-Madsen Tate spectral sequence is the spectral sequence associated to this filtration.
In the finite group case, conditional convergence of the Hesselholt-Madsen spectral sequence followed from conditional convergence of the Greenlees Tate spectral sequence, where it was clear from construction. For the case $G = \mathbb{T}$, we need to prove it separately. As the details are not needed in the main argument, we defer the proof of the following lemma to Section 12.

Lemma 3.16. For $G = \mathbb{T}$, the Hesselholt-Madsen Tate spectral sequence converges conditionally to the colimit $\pi_*^{\mathbb{T}} X$.

Lemmas 3.8 and 3.9 hold for $G = \mathbb{T}$ using these filtrations. We therefore again obtain a monoidal structure on the spectral sequence as in (3.10). The E_1-term for S is a bigraded ring that acts on both sides on the E_1-term for an arbitrary X.

Theorem 3.17. For $G = \mathbb{T}$, the E_1-term for the Hesselholt-Madsen Tate spectral sequence for $X = S$ is as a bigraded ring the free graded commutative $\pi_* S$-algebra on a generator x in bidegree $(2, 0)$, a generator y in bidegree $(2, -1)$, and a generator z in bidegree $(-2, 0)$ subject to the relation $y^2 = 0$.

In the previous statement, for the $\pi_* S$ action, we regard elements of $\pi_* S$ as concentrated in degree 0 for the first grading, i.e., elements of $\pi_n S$ are in bidegree $(0, n)$. In analogy with Notation 3.11, we use the following notation in the case $G = \mathbb{T}$, so that the E_1-term of the Hesselholt-Madsen Tate spectral sequence for S is isomorphic as a bigraded ring to $HM_{\ast, \ast} \otimes \pi_* S$.

Notation 3.18. Let $HM_{\ast, \ast} = \mathbb{Z}[x, y, z]/y^2$ where x is in bidegree $(2, 0)$ and y is in bidegree $(2, -1)$, and z is in bidegree $(-2, 0)$.

For an arbitrary orthogonal \mathbb{T}-spectrum X, using the canonical isomorphism

$$HM_{\ast, \ast} \otimes \pi_* X \cong (HM_{\ast, \ast} \otimes \pi_* S) \otimes_{\pi_* S} \pi_* X,$$

the E_1-term of the Hesselholt-Madsen Tate spectral sequence for X naturally becomes a bimodule over $HM_{\ast, \ast}$. We have a canonical map $\pi_* X \to E_{0, \ast}^1$ induced by the identification of

$$i^* X \simeq (R_{\mathbb{T}} F(ET_0, R_{\mathbb{T}} X))^\mathbb{T}$$

as the homotopy cofiber of $T_{\mathbb{T}} X_{0,1} \to T_{\mathbb{T}} X_{0,0}$, where i^* denotes the underlying non-equivariant spectrum. We then get an induced a map of left $HM_{\ast, \ast}$-modules from $HM_{\ast, \ast} \otimes \pi_* X$ to the E_1-term for X.

Theorem 3.19. The map from $HM_{\ast, \ast} \otimes \pi_* X$ to the E_1-term of the Hesselholt-Madsen Tate spectral sequence for X is an isomorphism of $HM_{\ast, \ast}$-bimodules and a monoidal transformation.

Non-multiplicatively, the previous theorem identifies the E_1-term of the Hesselholt-Madsen Tate spectral sequence for an orthogonal \mathbb{T}-spectrum X as

$$E_{2i,j}^1 = \begin{cases} \bigoplus_{m \geq 0} \pi_j X & i > 0 \\ \bigoplus_{m \geq 0} \pi_j X \oplus \bigoplus_{m \geq 1} \pi_{j+1} X & i \leq 0. \end{cases}$$
4. Topological periodic cyclic homology

Having reviewed the definition and basic properties of the Tate fixed point functor in the previous three sections, we now review the definition and basic properties of topological periodic cyclic homology (TP). We begin with a very rapid review of relevant aspects of the theory of THH of spectral categories and Mod_R-categories for R a commutative ring orthogonal spectrum. We define TP of spectral categories and, as discussed below, we rely on the equivalence of k-linear dg categories and Mod_{Hk}-categories to define TP of dg categories.

Let Cat^S denote the category of small spectral categories and spectral functors: An object of Cat^S is a small category enriched in orthogonal spectra and a morphism in Cat^S is an enriched functor. As explained in [6, §3], the topological Hochschild-Mitchell complex N_{cy} yields a functor from orthogonal spectra to orthogonal T-spectra. Since we are working with Borel equivalences, the left derived functor provides an adequate model for THH. (In other contexts, we should apply the point-set change of universe to obtain a functor $N_T: \text{Cat}^S \to S^T$ called the T-norm [1, §5].)

To make sense of the left derived functor THH, we say that a small spectral category is pointwise cofibrant if each mapping spectrum $\mathcal{C}(x,y)$ is a cofibrant orthogonal spectrum. A spectral functor $F: \mathcal{C} \to \mathcal{D}$ is a pointwise equivalence if the induced function on object sets is the identity and each map of spectra $\mathcal{C}(x,y) \to \mathcal{D}(x,y)$ is a weak equivalence. The argument of [6, 2.7] shows that there is an endofunctor Q of Cat^S that lands in pointwise cofibrant small spectral categories and a natural transformation $Q \to \text{Id}$ through pointwise equivalences. The topological Hochschild-Mitchell complex N_{cy} composed with Q then takes pointwise equivalences of spectral categories to Borel equivalences of orthogonal T-spectra.

Although pointwise cofibrant replacement is technically convenient, we are typically interested in less rigid notions of equivalence on Cat^S. We say that a functor $F: \mathcal{C} \to \mathcal{D}$ is a Dwyer-Kan equivalence (or DK-equivalence) if the induced functor on object sets is the identity and each map of orthogonal spectra $\mathcal{C}(x,y) \to \mathcal{D}(x,y)$ is a weak equivalence [6, 5.1]. We say that a functor $F: \mathcal{C} \to \mathcal{D}$ is a Morita equivalence if the induced functor on “triangulated closures” is a DK-equivalence (see [6, §5]). Here the triangulated closure of a small spectral category \mathcal{C} is a spectral category \mathcal{C}' such that $\text{Ho}(\mathcal{C}')$ is the pre-triangulated closure of $\text{Ho}(\mathcal{C})$ [6, 5.5].

The composite $N_{cy} \circ Q$ sends Morita equivalences of spectral categories to Borel equivalences of orthogonal T-spectra [6, 5.12]. We define topological Hochschild homology (THH) to be the resulting left derived functor

$$\text{THH}: \text{Ho}^M(\text{Cat}^S) \to \text{Ho}^B(\mathcal{S}^T),$$

where $\text{Ho}^M(\text{Cat}^S)$ denotes the homotopy category of spectral categories obtained by formally inverting the Morita equivalences. The work of Shipley [29, 4.2.8–9] and Patchkoria-Sagave [27, 3.8] (cf. [6, 3.5]) shows that $\text{THH}(\mathcal{C})$ coincides with the classical Bökstedt construction of topological Hochschild homology as functors to $\text{Ho}^B(\mathcal{S}^T)$.

Definition 4.1. Topological periodic cyclic homology

$$TP: \text{Ho}^M(\text{Cat}^S) \to \text{Ho}(\mathcal{S})$$
is the composite derived functor \(TP(\mathcal{C}) = \text{THH}(\mathcal{C})^T \).

The smash product of spectral categories endows \(\mathcal{C}at^{\mathcal{Q}} \) with a symmetric monoidal structure. This smash product can be left derived using the pointwise cofibrant replacement functor \(Q \) \cite[4.1]{BLUMBERG2019}. The standard Milnor product argument makes \(N^{cv} \) a strong symmetric monoidal functor, which passes to the homotopy category (inverting Morita equivalences) to make \(\text{THH} \) a strong symmetric monoidal functor \cite[6.8,6.10]{BLUMBERG2019}. As an immediate consequence of this discussion and Corollary 2.7, we have:

Proposition 4.2. \(TP \) has the canonical structure of a lax symmetric monoidal functor \(\text{Ho}^M(\mathcal{C}at^{\mathcal{Q}}) \to \text{Ho}(\mathcal{Z}) \).

For \(R \) a commutative ring orthogonal spectrum, the definition of \(\mathcal{M}od_R \)-category is completely analogous to the definition of spectral category, using the category of \(R \)-modules in place of the category of orthogonal spectra. We denote the category of \(\mathcal{M}od_R \)-categories as \(\mathcal{C}at^{\mathcal{Q}}_R \) and the homotopy category obtained by formally inverting the Morita equivalences as \(\text{Ho}^M(\mathcal{C}at^{\mathcal{Q}}_R) \). When \(R \) is cofibrant as a commutative ring orthogonal spectrum (which we can assume without loss of generality), \(N^{cv} \) preserves Morita equivalences between pointwise cofibrant \(\mathcal{M}od_R \)-categories (where we understand cofibrant in the sense of the category of \(R \)-modules). We then have the following proposition for \(TP \) of \(\mathcal{M}od_R \)-categories, using the model \(JT^F N^{cv}(R) \) (in Notation 2.6; see also Theorem 2.5).

Proposition 4.3. Let \(R \) be a cofibrant commutative orthogonal ring spectrum. Then \(TP \) has the canonical structure of a lax symmetric monoidal functor \(\text{Ho}^M(\mathcal{C}at^{\mathcal{Q}}_R) \to \text{Ho}(\mathcal{M}od_{TP(R)}) \).

Next, let \(\mathcal{C}at^{dg}_k \) denote the category of small \(k \)-linear dg categories for a commutative ring \(k \): An object consists of a small category enriched in chain complexes of \(k \)-modules and a morphism is an enriched functor. Choosing a cofibrant commutative ring orthogonal spectrum \(Hk \) representing the Eilenberg-Mac Lane ring spectrum, we have a symmetric monoidal equivalence of homotopy categories \(\text{Ho}(\mathcal{C}at^{dg}_k) \simeq \text{Ho}(\mathcal{C}at^{\mathcal{Q}}_{Hk}) \) and \(\text{Ho}^M(\mathcal{C}at^{dg}_k) \simeq \text{Ho}^M(\mathcal{C}at^{\mathcal{Q}}_{Hk}) \), q.v. \cite[§2]{BLUMBERG2019}. Using this equivalence, we obtain \(TP \) as a lax symmetric monoidal functor

\[
\text{Ho}^M(\mathcal{C}at^{dg}_k) \to \text{Ho}(\mathcal{M}od_{TP(k)})
\]

where we write \(TP(k) \) for \(JT^F N^{cv}(Hk) \).

5. A filtration argument (Proof of Theorem A)

The purpose of this section is to give an outline of the proof of the main theorem, assuming the existence of a point-set model of \(TP \) with a filtration that satisfies certain properties. Since construction of a model satisfying these properties is technically involved, it is useful to abstract out the key principles of the argument here, leaving the construction and verification of properties to Sections 9–11. The same basic outline also proves an analogous theorem for \(C_p \)-Tate of \(\text{THH} \) in the same context (\(k \)-linear dg categories for \(k \) a perfect field of characteristic \(p > 0 \)). Given the properties of the point-set model described below, we prove the main theorem using a comparison of spectral sequences argument.
For the purposes of this section, let G be a finite group or the circle group \mathbb{T} of unit complex numbers, and we consider a point-set functor

$$T^M : \mathscr{G}/S \to \mathscr{S}/S$$

where \mathscr{G}/S denotes the category of orthogonal G-spectra with a structure map from S and likewise \mathscr{S}/S denotes the category of orthogonal spectra with structure map from S. We intend to apply this functor to the THH of Hk-categories, where any choice of object of \mathscr{X} induces a map of orthogonal T-spectra $S \to N^\Sigma(\mathscr{X})$. We ask for T^M to come with the following additional structure:

(i) T^M is a lax monoidal functor.
(ii) T^M comes with a natural filtration by h-cofibrations

$$\cdots \to T^M_{-1} \to T^M_0 \to T^M_1 \to \cdots$$

with $\text{holim} T^M_{-n} \simeq *$ and $\text{colim} T^M_0 = T^M$.
(iii) The filtration is compatible with the monoidal structure in the sense that the structure map $S \to T^M$ has a natural lift to T^M_0 and we have natural maps

$$T^M_m(X) \wedge T^M_n(Y) \to T^M_{m+n}(X \wedge Y)$$

for all $m, n \in \mathbb{Z}$, which induce in the colimit the lax monoidal transformation

$$T^M(X) \wedge T^M(Y) \to T^M(X \wedge Y).$$

Moreover, we require that as a functor to the stable category T^M is naturally isomorphic to $(-)^G$ by an isomorphism taking the filtration to the Hesselholt-Madsen Tate filtration, Definition 3.15 (case $G = \mathbb{T}$) or 3.6 (case G finite), and we fix such an isomorphism.

The Hesselholt-Madsen Tate filtration comes with a map π_*X into $E^1_{0,*}$; it derives from a natural transformation from the underlying non-equivariant orthogonal spectrum i^*X to the 0th filtration quotient. We will need the following additional technical hypothesis about the filtration T^M_0X and this map.

Hypothesis 5.1. The given natural transformation in the stable category $i^*X \to T^M_0(X)/T^M_1(X)$ comes from a zigzag of point-set monoidal natural transformations.

Specifically, we construct in Section 11 a zigzag of point-set monoidal functors of the form

$$i^*X \xrightarrow{i} RRX \xleftarrow{\sim} TTX \to T^M_0 X/T^M_1 X$$

where RRX and TTX are specific point-set monoidal functors constructed there.

Assuming the existence of the functor T^M with properties above, the remainder of the section discusses and outlines a proof of the following theorem.

Theorem 5.2. Let $G = \mathbb{T}$ or C_p for a prime p. Let k be a perfect field of characteristic p, and let X and Y be G-equivariant $N^\Sigma(Hk)$-modules under $N^\Sigma(Hk)$ with the property that $\pi_*(X)$ and $\pi_*(Y)$ are finitely generated as graded modules over $THH_*(k) \cong \pi_*(N^\Sigma(Hk))$. Then the induced map

$$T^M(X) \wedge L_{THH_*(N^\Sigma(Hk))} T^M(Y) \to T^M(X \wedge N^\Sigma(Hk) Y)$$

is a weak equivalence.

This implies Theorem A and its analogue for $G = C_p$ as follows. Let \mathcal{X}' and \mathcal{Y}' be pointwise cofibrant Hk-spectral categories modeling smooth and proper k-linear dg categories \mathcal{X} and \mathcal{Y}, and take X and Y in the statement of Theorem 5.2 to be $N^\Sigma(\mathcal{X}')$ and $N^\Sigma(\mathcal{Y}')$, using any object of \mathcal{X}' and \mathcal{Y}' to obtain the structure maps
$N^\text{cy}(Hk) \to N^\text{cy}(\mathcal{X}')$ and $N^\text{cy}(Hk) \to N^\text{cy}(\mathcal{Y}')$. Although the map in Theorem A implicitly uses the lax symmetric monoidal structure on T_G constructed in Section 2, we show in Section 17 that the monoidal structure on the model T^M induces the same map in the stable category. Since $THH_\ast(k) \cong k[t]$ (with t in degree 2) is a Noetherian ring, it follows from Theorem C, which is proved independently in Section 15, that the THH_\ast of a smooth and proper k-linear dg category is finitely generated over $THH_\ast(k)$. The Künneth theorem for THH,

$$N^\text{cy}(\mathcal{X}') \wedge_{N^\text{cy}(Hk)} N^\text{cy}(\mathcal{Y}') \simeq N^\text{cy}(\mathcal{X}' \wedge_{Hk} \mathcal{Y}'),$$

q.v. Theorem 14.1, gives us a weak equivalence

$$T^M(X \wedge_{N^\text{cy}(Hk)} Y) \simeq T^M(N^\text{cy}(\mathcal{X}' \wedge_{Hk} \mathcal{Y}')) \simeq TP(\mathcal{X} \otimes \mathcal{Y}).$$

Putting this all together reduces Theorem A to the statement of Theorem 5.2.

We now outline the proof of Theorem 5.2. For convenience, write $A = N^\text{cy}(Hk)$. Without loss of generality, we can take X and Y in the statement to be cofibrant in the category of G-equivariant A-modules under A; then $X \wedge_A Y$ represents the derived smash product $X \wedge_{N^\text{cy}(Hk)} Y$. The filtration on $T^M(X \wedge_A Y)$ induces a spectral sequence, the Hesselholt-Madsen Tate spectral sequence for $X \wedge_A Y$. In our work below, we call this the \textit{righthand spectral sequence} as it is the codomain in a map of spectral sequences.

We construct the \textit{lefthand spectral sequence} as follows. As we review in Section 6, the compatibility of the filtration with the lax monoidal structure of T^M allows us to construct $T^M X \wedge_{T^M A} T^M Y$ as a filtered object. Actually, we are more interested in the derived smash product $T^M X \wedge_{T^M A} T^M Y$, and we argue in Section 6 that we can model the derived smash product by a filtered object where the comparison map to $T^M X \wedge_{T^M A} T^M Y$ is filtered; we choose such a model and denote it as $T^M X \wedge_{T^M A} T^M Y$. The filtration on $T^M X \wedge_{T^M A} T^M Y$ then gives the lefthand spectral sequence. The compatibility of the filtration with the lax monoidal structure of T^M implies that the map

\begin{equation}
T^M X \wedge_{T^M A} T^M Y \longrightarrow T^M(X \wedge_A Y)
\end{equation}

is filtered, and that gives us a map of spectral sequences from the lefthand spectral sequence to the righthand spectral sequence. The main step in the proof of Theorem 5.2 is the following result, which we prove in Section 7.

\textbf{Theorem 5.4.} The map of spectral sequences from the lefthand spectral sequence to the righthand spectral sequence is an isomorphism on E^1-terms.

To apply standard spectral sequence comparison techniques, we need the following two results on the convergence of the spectral sequences.

\textbf{Proposition 5.5.} The righthand spectral sequence is a half-plane spectral sequence with entering differentials, conditionally converging to $\pi_\ast(T^M(X \wedge_A Y))$.

\textit{Proof.} We have $\pi_\ast A \cong THH_\ast(k) \cong k[t]$ (with t in degree 2) is connective, and so Theorem C implies that $\pi_\ast X \cong THH_\ast(B)$ and $\pi_\ast Y \cong THH_\ast(C)$ are bounded below. It follows that $X \wedge_A Y$ is bounded below and so the explicit formula for the E^1-term in Theorem 3.19 (in the case $G = \mathbb{T}$) or Proposition 3.12 (in the case $G = C_p$) shows that $E^1_{i,j}$ is bounded below with bound independent of i. Conditional convergence is Lemma 3.16 in the case $G = \mathbb{T}$ and [15, 4.3.6] in the case $G = C_p$. \hfill \square
In Section 8, we prove the following lemma.

Lemma 5.6. The lefthand spectral sequence is conditionally convergent, converging to $\pi_\ast(T^M X \wedge_{T^M A} T^M Y)$.

Together, Theorem 5.4, Proposition 5.5, and Lemma 5.6 imply that the map (5.3) is a weak equivalence (by [7, 7.2]), which proves Theorem 5.2.

6. Filtered modules over filtered ring orthogonal spectra

This section begins the argument for Theorem 5.4 and Lemma 5.6. Theorem 5.4 compares a spectral sequence constructed from a smash product of Tate filtrations to the spectral sequence of the Tate filtration of the smash product. To develop the tools to do this, we study the homotopy theory of filtered modules over filtered ring orthogonal spectra and the derived smash product. We use the following terminology in this section and the next two.

Definition 6.1. A filtered spectrum X_\ast consists of a sequence of maps of orthogonal spectra

$$\cdots \to X_{-1} \to X_0 \to X_1 \to \cdots,$$

or equivalently a functor from the poset (\mathbb{Z}, \leq) to the category of orthogonal spectra. The category of filtered spectra has objects the filtered spectra and maps the natural transformations. We make filtered spectra a symmetric monoidal category using the Day convolution [24, §21] for the symmetric monoidal product $+$ on (\mathbb{Z}, \leq). Let S_\ast denote the filtered spectrum satisfying $S_n = \ast$ for $n < 0$ and $S_n = S$ and maps the identity maps for $n \geq 0$.

The Day convolution formulation of the smash product is a shortcut to produce the strong symmetric monoidal structure on the category, but in this case the construction is easy to describe. Given filtered spectra X_\ast and Y_\ast, the smash product $Z_\ast = X_\ast \wedge Y_\ast$ is given by the formula

$$Z_n = \bigcup_{i+j=n} X_i \wedge Y_j$$

or more formally,

$$Z_n = \colim_{s \to -\infty, t \to \infty} X_s \wedge Y_{n-s} \cup_{X_s \wedge Y_{n-s-1}} X_{s+1} \wedge Y_{n-s-1} \cup_{X_{s+1} \wedge Y_{n-s-2}} \cdots \cup_{X_{t-2} \wedge Y_{n-t+1}} X_{t-1} \wedge Y_{n-t} \cup_{X_{t-1} \wedge Y_{n-t-1}} X_t \wedge Y_{n-t}.$$

The smash product Z_\ast comes with canonical maps $X_i \wedge Y_j \to Z_{i+j}$ and is characterized by the property that maps of filtered spectra $X_\ast \wedge Y_\ast \to W_\ast$ are in natural bijective correspondence with systems of maps $X_i \wedge Y_j \to W_{i+j}$ that make the evident diagrams in i and j commute. The spectrum S_\ast is the unit for the smash product.

Definition 6.2. A filtered associative ring spectrum consists of a filtered spectrum A_\ast, a map $\eta: S_\ast \to A_\ast$, and a map $\mu: A_\ast \wedge A_\ast \to A_\ast$ satisfying the usual monoid relations (unit and associativity diagrams). A filtered left A_\ast-module (resp., filtered right A_\ast-module) consists of a filtered spectrum M_\ast and a map $\xi: A_\ast \wedge M_\ast \to M_\ast$ (resp., $\xi: M_\ast \wedge A_\ast \to M_\ast$) satisfying the usual action relations (unit and associativity diagrams).
Using the characterization of the smash product, we obtain an external formulation of filtered associative ring spectra: a filtered associative ring spectrum consists of a filtered spectrum A_* together with a map $\eta_0: S \to A_0$ and maps
\[\mu_{i,j}: A_i \wedge A_j \to A_{i+j} \]
such that the following unit diagrams
\[
\begin{array}{ccc}
S \wedge A_n & \xrightarrow{\eta_0 \wedge \text{id}} & A_0 \wedge A_n \\
\downarrow & & \downarrow \\
A_n & \xleftarrow{\mu_{0,n}} & A_0 \wedge S \\
\end{array}
\]
and associativity and structure map diagrams
\[
\begin{array}{ccc}
A_i \wedge A_j \wedge A_k & \xrightarrow{\mu_{i,j} \wedge \text{id}} & A_{i+j} \wedge A_k \\
\downarrow & & \downarrow \\
A_{i+j+k} & \xrightarrow{\mu_{i+j,k}} & A_{i+j+k} \\
\end{array}
\]
\[
\begin{array}{ccc}
A_i \wedge A_j \wedge A_k & \xrightarrow{\mu_{i,j} \wedge \text{id}} & A_{i+j} \wedge A_k \\
\downarrow & & \downarrow \\
A_{i+j+k} & \xrightarrow{\mu_{i+j,k}} & A_{i+j+k} \\
\end{array}
\]

commute, where we have written $\alpha_{k,l}: A_k \to A_l$ for the structure maps of A_*. Filtered left and right A_*-modules admit a similar external formulation.

Example 6.3. Let T^M_* be a functor satisfying the properties laid out in Section 5. For A an associative ring orthogonal T-spectrum, $T^M_* A$ has the canonical structure of a filtered associative ring spectrum. If X and Y are right and left A_*-modules, then $T^M_* X$ and $T^M_* Y$ have the canonical structure of right and left filtered $T^M_* A$-modules.

The argument in Section 5 uses a filtered version of the balanced smash product, which is constructed as follows.

Definition 6.4. Let A_* be a filtered associative ring spectrum, let M_* be a filtered right A_*-module and let N_* be a filtered left A_*-module. Define the balanced smash product $M_* \wedge A_* N_*$ to be the coequalizer
\[M_* \wedge A_* N_* \xrightarrow{\text{coequalizer}} M_* \wedge A_* N_* \]
where one map is induced by the right A_*-action on M_* and the other is induced by the left A_*-action on N_*. The coequalizer is a filtered spectrum (typically with no extra structure).

Since smash products and coequalizers commute with sequential colimits, we see that
\[\text{colim}(M_* \wedge A_* N_*) \cong (\text{colim } M_*) \wedge (\text{colim } A_*) (\text{colim } N_*) . \]
In other words, the balanced smash product above gives a filtration on the balanced smash product of the underlying unfiltered modules.

A filtered spectrum naturally gives a spectral sequence on homotopy groups. To avoid the ambiguity of writing $E^1_{i,j}(X)$ for the E^1-term, we introduce the following notation.

Definition 6.5. For a filtered spectrum X_*, let $\pi^\text{Gr}_{i,j} X_* = \pi_{i+j} C(X_1, X_{i-1})$, where $C(X_1, X_{i-1})$ denotes the homotopy cofiber of the structure map $X_{i-1} \to X_i$.
It is also useful to work directly with the orthogonal spectra $C(X_n, X_{n-1})$ whose homotopy groups represent π^*_{Gr}, the associated graded spectra of the filtration. We follow the traditional route of defining a point-set functor Gr with good structural properties, and regard $C(X_n, X_{n-1})$ as a model for the left derived functor. Before defining Gr, we define the target category.

Definition 6.6. The category of graded spectra is the category of functors from the discrete category \mathbb{Z} to orthogonal spectra: A graded spectrum X_* consists of a sequence of orthogonal spectra X_n for each $n \in \mathbb{Z}$; a map of graded spectra $X_* \to Y_*$ consists of a sequence of maps of orthogonal spectra $X_n \to Y_n$ for $n \in \mathbb{Z}$. The category of graded spectra becomes a symmetric monoidal category using the Day convolution for the symmetric monoidal product $+$ on \mathbb{Z}:

$$(X_* \wedge Y_*)_n = \bigvee_{i+j=n} X_i \wedge Y_j.$$

Definition 6.7. The associated graded functor Gr from filtered spectra to graded spectra is defined by

$$(\text{Gr} X_*)_n := \text{Gr}_n(X_*):= X_n/X_{n-1}.$$

We emphasize that in the definition, X_n/X_{n-1} denotes the point-set quotient and not the homotopy cofiber. The functor Gr has a right adjoint Z that makes a graded spectrum into a filtered spectrum using the trivial map for structure maps. In particular Gr preserves colimits. It also clearly preserves smash products:

Proposition 6.8. Gr is a strong symmetric monoidal functor.

We define a graded associative ring spectrum and graded left and right modules over a graded associative ring spectrum in terms of the smash product with unit maps, multiplication, and action maps in the usual way for graded spectra just as we did for filtered spectra in Definition 6.2. The previous proposition implies that Gr takes filtered associative ring spectra to graded associative ring spectra and filtered left and right modules over a filtered associative ring spectrum A_* to graded left and right modules over the graded associative ring spectrum $\text{Gr} A_*$. The previous proposition and the fact that Gr preserves colimits then implies that Gr preserves the balanced smash product:

Proposition 6.9. Let A_* be a filtered associative ring spectrum, let M_* be a filtered right A_*-module and let N_* be a filtered left A_*-module. Then there is a canonical natural isomorphism

$$\text{Gr}(M_* \wedge_{A_*} N_*) \cong (\text{Gr} M_*) \wedge_{(\text{Gr} A_*)} (\text{Gr} N_*).$$

We now turn to the homotopy theory of filtered and graded spectra. To avoid confusion we do not use the unmodified phrase “weak equivalence” in the context of filtered and graded spectra. We always write objectwise weak equivalence for a map $X_* \to Y_*$ that is a weak equivalence $X_n \to Y_n$ for all n. We call a map of filtered spectra $X_* \to Y_*$ a total weak equivalence when it induces a weak equivalence

$$\text{hocolim}_{n \to \infty} X_n \to \text{hocolim}_{n \to \infty} Y_n.$$

Objectwise weak equivalences are total weak equivalences, but not vice versa. However, the following result provides a useful converse under an additional hypothesis.
Proposition 6.10. Let \(f: X_\ast \to Y_\ast \) be a map of filtered spectra that induces an isomorphism on \(\pi^G_\ast \). Then \(f \) is a total weak equivalence if and only if it is an objectwise weak equivalence.

Proof. We only need to show the direction that assumes \(f \) is a total weak equivalence; the converse is clear. Write \(X_\infty \) for \(\operatorname{hocolim} X_n \) and \(Y_\infty \) for \(\operatorname{hocolim} Y_n \). The hypothesis is then that the map \(C(X_{n+1}, X_n) \to C(Y_{n+1}, Y_n) \) is a weak equivalence for all \(n \); by induction, we see that \(C(X_{n+i}, X_n) \to C(Y_{n+i}, Y_n) \) is a weak equivalence for all \(n, i \), and passing to the homotopy colimit (in \(i \)), we see that \(C(X_\infty, X_n) \to C(Y_\infty, Y_n) \) is a weak equivalence for all \(n \). When \(f \) is a total weak equivalence, then \(X_\infty \to Y_\infty \) is a weak equivalence, and it follows that \(X_n \to Y_n \) is a weak equivalence for all \(n \). \(\square \)

Standard results [16, 11.6.1],[28, 4.1] provide a closed model structure on filtered spectra for the objectwise weak equivalences.

Proposition 6.11. The category of filtered spectra has a compactly generated topological model structure in the sense of [24, 5.9,5.12] with weak equivalences and fibrations defined objectwise.

Proposition 6.12. The categories of filtered associative ring spectra and filtered left and right modules over a filtered associative ring spectrum are compactly generated topological closed model categories with weak equivalences and fibrations defined objectwise.

We call the homotopy categories of the preceding model structures the filtered derived category of left and right \(A_\ast \)-modules. We have a derived smash product of an \(A_\ast \)-module and a filtered spectrum, denoted \(\wedge^L \), which may be constructed by cofibrant approximation of either object. Using this, we have an evident notion of homotopical module in the derived category. For us, the case that is most useful is that of homotopical left \(B_\ast \)-modules in the filtered derived category of right \(A_\ast \)-modules, so we make this definition explicitly; other types of homotopical modules are defined analogously.

Definition 6.13. Let \(A_\ast \) and \(B_\ast \) be a filtered associative ring spectra. A homotopical left \(B_\ast \)-module in the filtered derived category of right \(A_\ast \)-modules consists of a right \(A_\ast \)-module \(N_\ast \) and a map

\[\xi: B_\ast \wedge^L N_\ast \rightarrow N_\ast \]

in the filtered derived category of right \(A_\ast \)-modules satisfying the usual unit and associativity conditions.

The next proposition, a special case of [21, 8.2], studies the homotopy theory of the balanced smash product. It implies in particular that the filtered derived smash product may be computed by deriving either variable.

Proposition 6.14. Let \(A_\ast \) be a filtered associative ring spectrum. The left derived bifunctor \(\operatorname{Tor}^{A_\ast}(-,-) \) of the balanced product \((-) \wedge_{A_\ast} (-) \) exists and can be constructed by cofibrant replacement of either variable. In particular, for each right module \(M_\ast \) and left module \(N_\ast \), \(\operatorname{Tor}^{A_\ast}(-, N_\ast) \) is the left derived functor of \((-) \wedge_{A_\ast} N_\ast \) and \(\operatorname{Tor}^{A_\ast}(M_\ast, -) \) is the left derived functor of \(M_\ast \wedge (-) \).
Given this proposition, there is no source of confusion for which derived functor \wedge^L denotes; we now switch to writing $M_* \wedge^L_{A_*} N_*$ in place of $\text{Tor}^{A_*}(M_*, N_*)$.

As a consequence of the proposition, if M_* has the structure of a homotopical left A_*-module in the category of filtered right A_*-modules, then $M_* \wedge^L_{A_*} (-)$ has the natural structure of a homotopical left A_*-module in filtered spectra.

For Propositions 6.11–6.14, analogous statements hold in context of graded spectra with easier proofs. As discussed above, the functor Gr from filtered spectra to graded spectra has a right adjoint, and from the description above, it is clear that the right adjoint preserves objectwise fibrations and objectwise weak equivalences. Thus, Gr is a Quillen left adjoint; its left derived functor $L\text{Gr}$ exists and may be constructed by applying Gr to a cofibrant replacement. Alternatively, as per the motivation for introducing Gr, we can use a homotopy cofiber construction. For work below it is useful to have a wide class of objects where the point-set functor Gr models the derived functor. We introduce the following terminology.

Definition 6.15. A filtered spectrum X_* is **reasonably filtered** when the structure maps $X_n \to X_{n+1}$ are all h-cofibrations.

In what follows, “reasonably filtered” will always refer to the underlying filtered spectrum. We elide “reasonably filtered filtered...” to “reasonably filtered...” for filtered spectra, filtered associative ring spectra, and filtered left and right modules.

Proposition 6.16. Gr preserves objectwise weak equivalences between reasonably filtered spectra.

Cofibrant objects in the model category of filtered spectra are reasonably filtered, and so Gr computes the derived functor $L\text{Gr}$ on all reasonably filtered spectra. When A_* is a reasonably filtered associative ring spectrum, cofibrant left and right filtered A_*-modules are reasonably filtered, and so the functors Gr from filtered left and right A_*-modules to graded left and right $\text{Gr} A_*$-modules have left derived functors, calculated by applying Gr to reasonably filtered replacements. We also have the following observation about the balanced smash product.

Proposition 6.17. Let A_* be a reasonably filtered associative ring spectrum, let M_* be a cofibrant right A_*-module and let N_* be a cofibrant left A_*-module. Then the balanced smash product $M_* \wedge^L_{A_*} N_*$ is a reasonably filtered spectrum.

Boardman [7, 5.10] defines conditional convergence of spectral sequences in terms of lim and lim^1. In the current context of filtered spectra, the spectral sequence associated to the filtration on X_* is conditionally convergent if and only if $\text{holim}_n X_{-n} \simeq *$. With this in mind, we make the following definition.

Definition 6.18. A filtered spectrum X_* is **conditionally convergent** when $\text{holim}_n X_{-n} \simeq *$

A first easy observation about conditional convergence of filtered spectra is that it is invariant under objectwise weak equivalences, and so conditional convergence may be studied in the homotopy category of filtered spectra.

Because homotopy limits commute with cofiber sequences and with other homotopy limits, the following propositions are clear.

Proposition 6.19. If X_* and Y_* are conditionally convergent, then for any map $X_* \to Y_*$, the homotopy cofiber is conditionally convergent.
Proposition 6.20. If $d \mapsto X_*(d)$ is a small diagram and each $X_*(d)$ is conditionally convergent, then $\text{holim}_d X_*(d)$ is conditionally convergent.

For a filtered spectrum X_*, the suspension $\Sigma^m X_*$ is defined objectwise, $(\Sigma^m X_*)_n = \Sigma^m X_n$, where we understand $\Sigma^m X = X \wedge F^{-m} S^0$ when $m < 0$. (Here $F^{-m} S^0$ is a particular cofibrant model of S^m; see [24, 1.3]). The shift $X_*[t]$ is defined by $(X_*[t])_n = X_{n-t}$. The following proposition is also clear.

Proposition 6.21. If X_* is conditionally convergent, then so is any suspension and shift.

For a filtered associative ring spectrum A_*, a finite cell filtered right A_*-module is a filtered right A_*-module that can be built in finitely many stages using cofiber sequences involving suspensions and shifts.

Proposition 6.22. If N_* is a conditionally convergent left A_*-module and M_* is a finite cell filtered right A_*-module, then $M_* \wedge L_A N_*$ is conditionally convergent.

Proof. $M_* \wedge L_A N_*$ is built in finitely many stages using cofiber sequences involving suspensions and shifts of N_*. □

7. Comparison of the lefthand and righthand spectral sequences (Proof of Theorem 5.4)

This section is devoted to the proof of Theorem 5.4. We prove a slightly more general result: We assume that that A is a commutative ring orthogonal T-spectrum, and X and Y are cofibrant A-modules under A. (We can also take G to be any closed subgroup of T.)

Let TY'_* be a filtered $T^*_M A$-module cofibrant replacement for $T^*_M Y$. In particular $\text{Gr} TY'_* \to \text{Gr} T^*_M Y$ is a weak equivalence. Theorem 5.4 asserts that the filtered map

$$T^*_M X \wedge_{T^*_M A} TY'_* \longrightarrow T^*_M (X \wedge_A Y)$$

induces a weak equivalence on $\pi^{\text{Gr}}_{*,*}$. Note that this is a map of homotopical left $T^*_M A$-modules and hence the induced map on $\pi^{\text{Gr}}_{*,*}$ is a map of left $\pi^{\text{Gr}}_{*,*} T^*_M A$-modules. Theorem 3.19 (in the case $G = T$) or Proposition 3.12 (in the case G is finite) gives an isomorphism of bigraded rings

$$\pi^{\text{Gr}}_{*,*} T^*_M A \cong H M_{*,*} \otimes \pi_* A.$$

In particular (7.1) is a map of left $H M_{*,*}$-modules.

By Hypothesis 5.1, we have a zigzag of monoidal functors, which as indicated takes the form

$$i^* \cong RR \cong TT \longrightarrow \text{Gr}_0 T^*_M,$$

where i^* denotes the forgetful functor to non-equivariant orthogonal spectra. Choosing cofibrant replacements $TTY' \to TT(Y)$ and $RRY' \to RRY$ in the categories of left TTA-modules and left RRA-modules, respectively, we can then choose lifts $TTY' \to \text{Gr}_0 TY'$ and $TTY' \to RRY'$ in left TTA-modules and $i^* Y \to RRY'$ (in left $i^* A$-modules). Since the natural transformations are monoidal, we get a
commutative diagram of graded spectra
\[i^* X \wedge_{i^* A} i^* Y \xrightarrow{=} i^* X \wedge_{i^* A} i^* Y \]
\[\cong \]
\[RR(X) \wedge_{RR(A)} RRY' \xrightarrow{=} RR(X \wedge_A Y) \]
\[\cong \]
\[TT(X) \wedge_{TT(A)} TTY' \xrightarrow{=} TT(X \wedge_A Y) \]
\[\cong \]
\[\text{Gr} T^*_e X \wedge_{\text{Gr} T^*_e A} \text{Gr} TTY' \xrightarrow{=} \text{Gr}(T^*_e (X \wedge_A Y)) \]

where we view the ungraded spectra as concentrated in degree 0. On the righthand side, since
\[\pi_{*,*}^{Gr}(T^*_e (X \wedge_A Y)) \cong \pi_{*,*} \text{Gr}(T^*_e (X \wedge_A Y)) \]
is a left \(HM_{*,*} \)-module, we get an induced map of \(HM_{*,*} \)-modules
\[HM_{*,*} \otimes \pi_{i^* X \wedge_{i^* A} i^* Y} \rightarrow \pi_{*,*}^{Gr}(T^*_e (X \wedge_A Y)) \]
which by construction (and Hypothesis 5.1) is the usual isomorphism. We are now reduced to proving the following lemma.

Lemma 7.2. The induced map of bigraded abelian groups
\[HM_{*,*} \otimes \pi_{i^* X \wedge_{i^* A} i^* Y} \rightarrow \pi_{*,*}^{Gr}(T^*_e (X \wedge_A Y)) \]
is an isomorphism.

Proof. We have trigraded Eilenberg-Moore spectral sequences to compute both sides. On the left we take the tensor of the torsion free bigraded abelian group \(HM_{*,*} \) with the Eilenberg-Moore spectral sequence for the smash product \(i^* X \wedge_{i^* A} i^* Y \); this has \(E^2 \)-term
\[E^2_{i,j,*} = HM_{j,*} \otimes \text{Tor}_{i,*}^{e,A}(\pi_, X, \pi_, Y). \]

On the right the usual Eilenberg-Moore spectral sequence for the balanced smash product of associated graded modules is naturally trigraded with \(E^2 \)-term
\[E^2_{i,j,*} = \text{Tor}_{i}^{e,A}(\pi_{*,*} X, \pi_{*,*} Y) \cong \text{Tor}_{i,*}^{HM_{*,*} \otimes \pi_{*,*}}(HM_{*,*} \otimes \pi_{*,*} X, HM_{*,*} \otimes \pi_{*,*} Y). \]
Since the map is induced by maps of rings and modules, we get a homomorphism of spectral sequences. Since the isomorphism \(HM_{*,*} \otimes \pi_* Z \cong \pi_{*,*}^{Gr} Z \) of Theorem 3.19 or Proposition 3.12 is induced by the same map \(\pi_* Z \rightarrow \pi_{*,*}^{Gr} T^M Z \) as in Hypothesis 5.1, the induced map on \(E^2 \)-terms
\[HM_{*,*} \otimes \text{Tor}_{i,*}^{e,A}(\pi_{*,*} X, \pi_{*,*} Y) \rightarrow \text{Tor}_{i,*}^{HM_{*,*} \otimes \pi_{*,*}}(HM_{*,*} \otimes \pi_{*,*} X, HM_{*,*} \otimes \pi_{*,*} Y) \]
is the evident isomorphism. \(\square \)

8. **CONDITIONAL CONVERGENCE OF THE LEFTHAND SPETRUAL SEQUENCE**

(PROOF OF LEMMA 5.6)

We employ the terminology of Section 6. In this terminology, Lemma 5.6 is precisely the assertion that the filtered spectrum \(T^*_e (X \wedge_{T^*_e A} Y) \) is conditionally convergent. The proof relies on the following property, specific to perfect fields of finite characteristic. In it \(i_* \) denotes the point set functor from orthogonal spectra to orthogonal \(T \)-spectra left adjoint to the forgetful functor.
Proposition 8.1. Let k be a perfect field of finite characteristic. View i_*Hk as a \mathcal{T}-equivariant $N^{cy}(Hk)$-module via the augmentation $N^{cy}(Hk) \to i_*Hk$, a map of orthogonal ring \mathcal{T}-spectra. In the Borel derived category of left $N^{cy}(Hk)$-modules, i_*Hk is finite.

Proof. We have $THH_*(k) \cong k[t]$ (with t in degree 2), so it suffices to show that there exists a map in the Borel stable category $\Sigma^2 \mathbb{S} \to THH(k)$ sending the fundamental class to t, or equivalently, that t is in the image of the map $\pi_*^{ht}THH(k) \to \pi_*THH(k)$. The homotopy fixed point spectral sequence is conditionally convergent in this case and concentrated in even degrees, and so strongly convergent with $E_2 = E_\infty$. In particular, the map $\pi_*^{ht}THH(k) \to \pi_*THH(k)$ is surjective. \hfill \Box

Throughout this section, when we refer to i_*Hk as an equivariant $N^{cy}(Hk)$-module, we always mean the structure in Proposition 8.1. In the argument for Lemma 5.6, we will use Postnikov towers built from i_*Hk.

Proposition 8.2. Let $A = N^{cy}(Hk)$ and let X be an equivariant A-module. If $\pi_nX = 0$ for $n < N$ then there exists a tower of equivariant A-modules

$$
\cdots \rightarrow X_{m+1} \rightarrow X_m \rightarrow \cdots \rightarrow X_N \rightarrow X_{N-1} = *
$$

and a map of equivariant A-modules from X to the system such that:

(i) The map $X \to \text{holim} X_m$ is a Borel equivalence.

(ii) Each homotopy fiber $Fib(X_{m+1} \to X_m)$ is Borel equivalent as an equivariant A-module to a wedge of copies of $\Sigma^{m+1}i_*Hk$.

Proof. By way of notation, recall from Section 1 that $RF_A(-, -)$ denotes the equivariant derived mapping spectrum for the derived category of left A-modules, an object of the \mathcal{T}-equivariant stable category. In contrast, $RF_A^T(-, -)$ denotes the derived mapping spectrum in the Borel derived category of left A-modules, an object of the (non-equivariant) stable category, and the relationship is that $RF_A^T(-, -)$ is the homotopy fixed point spectrum of $RF_A(-, -)$. We then have isomorphisms

$$
\text{Ho}^B(\mathcal{Mod}_A)(X, \Sigma^n i_*Hk) \cong \pi_{-n}RF_A^T(X, i_*Hk) \cong \pi_{-n}RF_A(X, i_*Hk) \cong \pi_{-n}RF_{i_*Hk}(i_*Hk \wedge_A X, i_*Hk),
$$

the last isomorphism induced by change of scalars. By the Hurewicz theorem for (non-equivariant) A-modules and the hypothesis that $\pi_nX = 0$ for $n < N$, we have that the map $\pi_NX \to \pi_N(i_*Hk \wedge_A X)$ is an isomorphism and $\pi_n(i_*Hk \wedge_A X) = 0$ for $n < -N$. We see that $\pi_nRF_{i_*Hk}(i_*Hk \wedge_A X, i_*Hk) = 0$ for $n > -N$, and so from the homotopy fixed point spectral sequence, we deduce that the map

$$
\pi_{-N}RF_{i_*Hk}(i_*Hk \wedge_A X, i_*Hk) \rightarrow \pi_{-N}RF_{i_*Hk}(i_*Hk \wedge_A X, i_*Hk) \cong \pi_{-N}RF_{i_*Hk}(i_*Hk \wedge_A X, i_*Hk)
$$

is an isomorphism. This constructs enough maps $X \to \Sigma^N i_*Hk$ to produce a map $X \to \bigvee \Sigma^N i_*Hk$ that induces an isomorphism on π_N. The remainder of the construction is parallel to the usual construction of the Postnikov tower, using the techniques above to construct the maps. \hfill \Box

We are ready to prove Lemma 5.6.
Proof of Lemma 5.6. We use the Postnikov tower construction of Proposition 8.2 applied to Y. By construction, each Y_m is built in finitely many fiber sequences from a wedge of copies of $\Sigma^n i_* Hk$. These are finite wedges since $\pi_n X$ is finitely generated over k. We also know from Proposition 8.1 that $i_* Hk$ is finite in the Borel derived category of A-modules. It follows that $T^M Y_m$ is a finite filtered $T^M A$-module, and by Proposition 6.22, $T^M X \wedge^{L_{T^M A}} T^M Y_m$ is conditionally convergent.

Proposition 6.14 allows us to choose a cofibrant filtered $T^M A$-module replacement $TX'_* \to T^M X$ so that $TX'_* \wedge^{T^M A} (-)$ models $T^M X \wedge^{L_{T^M A}} (-)$. Proposition 6.20 now implies that

$$\holim_m(TX'_* \wedge^{T^M A} T^M Y_m)$$

is conditionally convergent. We have a map of filtered spectra

$$TX'_* \wedge^{T^M A} T^M Y_* \to \holim_m(TX'_* \wedge^{T^M A} T^M Y_m)$$

that induces an isomorphism on $\pi^n_{T^M A}$ since $\pi_* X$ is bounded below (for example, see Lemma 7.2). The proof is completed by showing that this map is an objectwise weak equivalence. We do this by applying Proposition 6.10 and showing that the map is a total weak equivalence. To see that the map is a total weak equivalence, it suffices to observe that TX' is small as a $T^M A$-module. This is the content of Theorem B in the case of main interest when $X = N^G(\mathcal{X}')$ and $G = T$, and follows in the current generality by its generalization, Theorem 16.4, proved in Section 16.

9. Constructing the filtered model: The positive filtration

In this section, we start the construction of the filtered functor T^M outlined in Section 5. As in the construction of the Hesselholt-Madsen Tate filtration in Section 3, we construct the integrally graded filtration from a positive filtration, arising from a filtration on EG, and a negative filtration, arising from a filtration on EG. In both cases, the technical work is to construct the multiplicative structure we require. This section handles the work for the positive filtration and the next one the work for the negative filtration.

The positive filtration on the Tate fixed points arises from the G-cellular filtration on EG. It should have S^0 in filtration level zero and free G-cells in every positive degree in the pattern specified by the cell structure of the standard model discussed in Section 3. Recall that when $G = T$, we double the natural filtration degrees as explained there. However, for the purposes of this section, we will work with the natural filtration degrees in order to give a uniform treatment, introducing a different notation to avoid confusion.

To construct a multiplicative version of this filtration, we use a model $\tilde{E}_G \hat{T}$ for an A_∞ operad \mathcal{O} (with $\mathcal{O}(0) = *$) and construct a new filtration, the “pseudocellular filtration”, which is coarser than the homogeneous filtration (2.3). Here we understand an A_∞ operad to have spaces the homotopy type of CW complexes, the identity element to be a non-degenerate basepoint, and to come with a weak equivalence of operads $\mathcal{O} \to \Ass$, where \Ass denotes the associative operad $\Ass(n) = \Sigma_n$. We have a corresponding non-Σ operad $\overline{\mathcal{O}}$ where $\overline{\mathcal{O}}(n)$ is the component of $\mathcal{O}(n)$ lying over the identity permutation in Σ_n; then \mathcal{O} is canonically isomorphic to the induced operad $(\overline{\mathcal{O}}(n) \cong \overline{\mathcal{O}}(n) \times \Ass(n))$. In this notation, $\tilde{E}_G G$ is formed by starting with S^0 and iteratively gluing on the cells $\overline{\mathcal{O}}(n) \times G^n \times I^n$.

Definition 9.1. Let \mathcal{O} be an A_∞ operad with $\mathcal{O}(0) = \ast$. We define the *pseudocellular filtration*, an increasing filtration on $\tilde{E}_G G$, as follows. We put S^0 in filtration level 0. For an element $(g_1, \ldots, g_n) \in G^n$, let
\[
q(g_1, \ldots, g_n) = n - (\delta(g_1, g_2) + \cdots + \delta(g_{n-1}, g_n)),
\]
where $\delta(g, h) = 1$ if $g = h$ and 0 otherwise. An element of $\tilde{E}_G G$ in the image of
\[
a, (g_1, \ldots, g_n), (t_1, \ldots, t_n) \in \mathcal{O}(n) \times G^n \times I^n
\]
is placed in filtration level $q(g_1, \ldots, g_n)$. For the purposes of this section, we write $\tilde{E}_G G^p_c$ for the subspace in pseudocellular filtration level n. For G, finite, we define $\tilde{E}_G G_n = \tilde{E}_G G^p_c$, and for $G = T$, we define $\tilde{E}_G G_{2n+1} = \tilde{E}_G G_{2n} = \tilde{E}_G G^p_c$.

Although different representatives of the same point may have different q-values, the filtration is well-defined: The point lies in all filtration levels of all representatives and all higher levels. The function q subtracts from the homogeneous degree the number of consecutive repeats; an element in homogeneous filtration level n is also in pseudocellular filtration level n (and possibly lower). Since G acts diagonally on G^n, the filtration is G-equivariant. The filtration is multiplicative in the following sense.

Proposition 9.2. The operad action maps $\mathcal{O}(m) \wedge \tilde{E}_G G^{(m)} \to \tilde{E}_G G$ preserve filtration using the pseudocellular filtration on $\tilde{E}_G G$ and the smash power of the pseudocellular filtration on $\tilde{E}_G G^{(m)}$.

Proof. Representing an element x of $\tilde{E}_G G^{(m)}$ as
\[
a^i, (g^i_1, \ldots, g^i_{n_i}), (t^i_1, \ldots, t^i_{n_i})
\]
for $i = 1, \ldots, m$, and given an element $a \in \mathcal{O}(m)$, the composition takes a, x to an element y of $\tilde{E}_G G$ that is represented by
\[
b, (h_1, \ldots, h_n), (u_1, \ldots, u_n)
\]
where $b = a \circ (a_1, \ldots, a_t)$, $n = n_1 + \cdots + n_m$, and the h_k's and u_k's are the lists obtained by flattening the arrays of g^i_1's and t^i_1's (respectively) lexicographically with the lower index first. The element x is in filtration level
\[
\sum_{i=1}^m q(g_1, \ldots, g_{n_i}) = \sum_{i=1}^m \left(n_i - \sum_{j=1}^{n_i-1} \delta(g^i_j, g^i_{j+1}) \right)
\]
which is at least as big as
\[
\sum_{i=1}^m \left(n_i - \sum_{j=1}^{n_i-1} \delta(g^i_j, g^i_{j+1}) \right) - \sum_{i=1}^{m-1} \delta(g^{i+1}_n, g^i_1) = n - \sum_{k=1}^{n-1} \delta(h_k, h_{k+1}),
\]
which filtration level contains y. \qed

To show that this filtration is equivalent to the standard one, consider the standard (simplicial) filtration on EG coming from the bar construction $EG = B(G, G, \ast)$ where
\[
B_n(G, G, \ast) = G \times (G^n).
\]
We have the same filtration when we look at the W-construction, the geometric realization of the simplicial set

$$WG_n = G^{n+1},$$

where the faces are induced by projection maps

$$d_i(g_0, \ldots, g_n) = (g_0, \ldots, \hat{g}_i, \ldots, g_n)$$

and the degeneracies by diagonal maps

$$s_i(g_0, \ldots, g_n) = (g_0, \ldots, g_{i-1}, g_i, g_{i+1}, \ldots, g_n).$$

This has the diagonal g-action, and the map $WG \to B_\bullet(G, G, \ast)$ defined by

$$g_0, \ldots, g_n \mapsto g_0, (g_0^{-1}g_1, \ldots, g_n^{-1})$$

is a G-equivariant simplicial isomorphism. We get another model by regarding WG_\bullet as a Δ-set, forgetting the degeneracies. Let WG be the cofiber of the map $WG_\bullet \to S^0$ collapsing WG to the non-basepoint. Let \widetilde{WG}_n be the cofiber of $(WG_{n-1})_+ \to S^0$ for the pseudocellular filtration on WG, where we understand WG_1 to be the empty set.

The equivariant weak equivalence $WG \to EG$ induces an equivariant weak equivalence $\widetilde{WG} \to \widetilde{EG}$, and the following proposition is clear by construction.

Proposition 9.4. The canonical map $\widetilde{WG} \to \widetilde{EG}$ is filtered for the standard filtration on \widetilde{EG} and an equivariant weak equivalence on each filtration level.

Next we define a map $\widetilde{EG} \to \widetilde{WG}$. Concretely, \widetilde{WG} is built from S^0 by iteratively attaching $G^n \times \Delta[n-1] \times I$ along $G^n \times \partial(\Delta[n-1] \times I)$ by the map that identifies an element

$$(g_1, \ldots, g_n), x, t$$

of $G^n \times \partial(\Delta[n-1] \times I) \subset G^n \times \Delta[n-1] \times I$ with

$$(g_1, \ldots, g_i, \ldots, g_n), y$$

when $x = d^{n-1}(y)$ for some $y \in \Delta[n-2]$, with the basepoint if $t = 1$, and with the non-basepoint element of $S^0 = \widetilde{WG}_0$ when $t = 0$. We can identify the image of $G^n \times \Delta[m] \subset WG$ in terms of repeated coordinates. Concisely, a point is in \widetilde{WG}_n exactly when it has a representative $(g_1, \ldots, g_n), x, t$ with $q(g_1, \ldots, g_n) \leq n$, where q is the function defined in Definition 9.1.
We define the map $\tilde{E}_O G \rightarrow \tilde{W}G^\Delta$ as follows. We send $S^0 = \tilde{E}_O G_0$ by the identity into $S^0 = \tilde{W}G^\Delta_0$, and we send the element of $\tilde{E}_O G$ represented by $a, (g_1, \ldots, g_n), (t_1, \ldots, t_n)$, to the basepoint if $\sum t_i \geq 1$, to the non-basepoint element of S^0 if $t_i = 0$ for all i, and otherwise to the element represented by $(g_1, \ldots, g_n), x, t$ where $t = \sum t_i$ and x has barycentric coordinates $t_1/t, t_2/t, \ldots, t_n/t$.

It is clear from the gluing relations on $\tilde{E}_O G$ that this is well-defined, continuous, and equivariant. Moreover, it is clear from the construction of the filtration that it is filtered for the pseudocellular filtration. The following proposition completes the work we need on the pseudocellular filtration.

Proposition 9.5. The map $\tilde{E}_O G_{pc}^n \rightarrow \tilde{W}G^\Delta_n$ is an equivariant weak equivalence for all n.

Proof. For every non-trivial $H < G$, the induced map on H-fixed points is the identity map $S^0 \rightarrow S^0$, so it suffices to show that it is a non-equivariant weak equivalence. For both $\tilde{E}_O G$ and $\tilde{W}G^\Delta$, the nth piece of the filtration is built from the $(n-1)$st piece of the filtration by attaching cells of a certain form along boundaries. For $\tilde{E}_O G$, these cells are of the form

$$\overline{O}(n) \times G^n \times I^{n+m}$$

with boundary

$$(\overline{O}(n) \times sG^n \times I^{n+m}) \cup (\overline{O}(n) \times G^n \times \partial I^{n+m}) \subset \overline{O}(n) \times G^n \times I^{n+m}$$

for $m \geq 0$, where sG^n denotes the subspace where at least one coordinate is the same as the following coordinate. The cells for $\tilde{W}G^\Delta$ are in one-to-one correspondence but of the form

$$G^n \times \Delta[n-1+m] \times I$$

with boundary

$$(sG^n \times \Delta[n-1+m] \times I) \cup (G^n \times \partial(\Delta[n-1+m] \times I)) \subset G^n \times \Delta[n-1+m] \times I.$$

The map $\tilde{E}_O G_{pc}^n \rightarrow \tilde{W}G^\Delta_n$ sends each cell of $\tilde{E}_O G_{pc}^n$ to the corresponding cell of $\tilde{W}G^\Delta_n$ by a homotopy equivalence, which is a homotopy equivalence on the boundary. \qed

10. **Constructing the filtered model: The negative filtration**

This section continues the work on constructing the filtered functor T^M by constructing the negative part of the Hesselholt-Madsen multiplicative filtration. The negative filtration arises from the T-cellular filtration of ET and the diagonal map $ET \rightarrow ET \times ET$ (partly) induces the multiplication. Of course, the diagonal is not compatible with the filtration; we must modify the diagonal to make it cellular. Our approach is to parametrize different diagonal maps using a variant of the little 1-cubes operad, the “overlapping little 1-cubes” operad.
Definition 10.1. The overlapping little 1-cubes O_1^n has nth space the subspace of elements $((x_1, y_1), \ldots, (x_n, y_n))$ of $(I^2)^n$ satisfying $x_i < y_i$, with Σ_n acting in the usual way on $(-)^n$. Composition is just like in the little 1-cubes operad:

$$((x_1, y_1), \ldots, (x_n, y_n)) \circ ((x'_1, y'_1), \ldots, (x'_n, y'_n))$$

$$= ((x_1, y_1), \ldots, (x_{i-1}, y_{i-1}, x_i + (y_i - x_i)x'_i, x_i + (y_i - x_i)y'_i),$$

$$\ldots, (x_i + (y_i - x_i)x'_n, x_i + (y_i - x_i)y'_n), (x_{i+1}, y_{i+1}), \ldots, (x_n, y_n))$$

Identifying I^2 with the increasing linear endomorphisms of I by $(x, y) \leftrightarrow f(x, y)$ where $f(x, y)(t) = x + (y - x)t$, the composition formula can be written more conceptually as

$$(f(x_1, y_1), \ldots, f(x_n, y_n)) \circ (f(x'_1, y'_1), \ldots, f(x'_n, y'_n))$$

$$= (f(x_1, y_1), \ldots, f(x_{i-1}, y_{i-1}), f(x_i, y_i) \circ f(x'_i, y'_i),$$

$$\ldots, f(x_{i}, y_{i}) \circ f(x'_{n}, y'_{n}), f(x_{n}, y_{n})).$$

Note that the distinguished point $((0, 1), \ldots, (0, 1))$ in $O_1^n(n)$ (corresponding to the identity map $I \rightarrow I$) induces a map of operads from the commutative operad into O_1^n, this map is a spacewise equivariant homotopy equivalence. We have a canonical map from the little 1-cubes operad O_1 to O_1^n as the spacewise inclusion of the subsets where the open intervals $(x_1, y_1), \ldots, (x_n, y_n) \subset I$ do not overlap.

The purpose of the overlapping little 1-cubes operad O_1^n is that it has a natural coaction on the geometric realization of a simplicial space, generalizing the diagonal map. We recall that for a space X, the space of continuous maps $\text{End}^\text{op}_X(n) = Map(X, X^n)$ naturally forms an operad, and a coaction of an operad O on the space X is a map of operads $O \rightarrow \text{End}^\text{op}_X$. For example, the set of diagonal maps $X \rightarrow X^n$ gives a coaction of Com on any space. The theorem is the following.

Theorem 10.2. The operad O_1^n has a natural coaction on the geometric realization of a simplicial space $|Z_\bullet|$ such that the composite coaction of Com is the set of diagonal maps and the composite coaction of O_1,

$$|Z_\bullet| \times C_1(n) \rightarrow |Z_\bullet|^n$$

is filtered for the simplicial filtration on $|Z_\bullet|$.

We emphasize that the target uses the cartesian product filtration for the filtration on $|Z_\bullet|^n$ rather than the simplicial filtration on $|Z_\bullet|$.

We apply this to the standard model of EG formed from the bar construction. In the case when G is finite, the simplicial filtration is just the cellular filtration. In the case when $G = \mathbb{T}$, it is a renumbering of the cellular filtration which has one free \mathbb{T}-cell in each even dimension. (The cartesian product filtration on ET^n for $n > 1$ is not closely related to a cellular filtration since \mathbb{T} is positive dimensional.) Recall we define EG_n to be the nth geometric filtration level when G is finite and $EG_{2n+1} = EG_{2n}$ to be the nth geometric filtration level when $G = \mathbb{T}$. Then for any partition $n = n_1 + \cdots + n_m$, the map

$$EG \times C_1(m) \rightarrow EG \times \cdots \times EG$$

takes the subspace $EG_{n-1} \times C_1(m)$ to the subspace

$$(EG^m)_{n-1} \subset (EG_{n-1} \times EG \times \cdots \times EG) \cup \cdots \cup (EG \times \cdots \times EG \times EG_{n-1}).$$
We therefore get a map of based G-spaces

$$EG/EG_{n-1} \wedge C_1(m)_+ \longrightarrow EG/EG_{n_1-1} \wedge \cdots \wedge EG/EG_{n_m-1}.$$

Then for any orthogonal G-spectra X_1, \ldots, X_m, the cotensor adjunction induces a map of orthogonal G-spectra

$$C_1(m)_+ \wedge F(EG/EG_{n_1-1}, X_1) \wedge \cdots \wedge F(EG/EG_{n_m-1}, X_m) \longrightarrow F(EG/EG_{n-1}, X_1 \wedge \cdots \wedge X_m).$$

In the next section, we convert this structure into a monoidal structure using the usual Moore trick to convert C_1 structure to strictly associative structures.

We conclude the section with the proof of Theorem 10.2.

Proof of Theorem 10.2. Recall the Milnor coordinates $u_1 \leq u_2 \leq \cdots \leq u_n$ on the standard n-simplex $\Delta[n]$ give a homeomorphism of $\Delta[n]$ with a subspace of I^n and relate to the barycentric coordinates t_0, \ldots, t_n by the formulas

$$u_j = \sum_{i=0}^{j-1} t_i \quad t_j = u_{j+1} - u_j$$

(where in the righthand formula $u_0 = 0$ and $u_{n+1} = 1$). Then any element of the geometric realization of a simplicial space Z_\bullet is specified (non-uniquely) by an element $z \in Z_n$ and Milnor coordinates $u_1 \leq \cdots \leq u_n$, and an element of $O_T(C_1)$ is specified by a sequence of subintervals of I, $(x_1, y_1), \ldots, (x_m, y_m)$. On this element, the coaction map has the form

$$(z, u_1 \leq \cdots \leq u_n), ((x_1, y_1), \ldots, (x_m, y_m)) \in (Z_n \times \Delta[n]) \times O_T(C_1)$$

$$\mapsto (z, v_1^1 \leq \cdots \leq v_n^1), \ldots, (z, v_1^m \leq \cdots \leq v_n^m) \in (Z_n \times \Delta[n])^m.$$

To specify the v_j^i’s, we note that the linear function $f(x, y)$ has a unique weakly increasing left inverse function $g(x, y): I \mapsto I$ given by the formula

$$g(x, y)(t) = \begin{cases}
0 & t < x \\
(t-x)/(y-x) & x \leq t \leq y \\
1 & t > y.
\end{cases}$$

We let $v_j^i = g(x_i, y_i)(u_j)$.

This formula describes a continuous map

$$(Z_n \times \Delta[n]) \times O_T(C_1) \longrightarrow (Z_n \times \Delta[n])^m \longrightarrow |Z_\bullet|^m,$$

which is clearly compatible with the simplicial gluing instructions to construct a map

$$|Z_\bullet| \otimes O_T(C_1) \longrightarrow |Z_\bullet|^m$$

or equivalently a map $C(m) \mapsto \text{End}^{op}_{|Z_\bullet|}(m)$. A straightforward check of the explicit formulas shows that this is a map of operads.

For the composite coaction of Com, we are looking at the case

$$(x_1, y_1), \ldots, (x_m, y_m) = (0, 1), \ldots, (0, 1)$$

and $g_{(0,1)}$ is the identity endomorphism of I and so $v_j^i = u_j$. The coaction is therefore the set of diagonal maps.

For the composite coaction of C_1, we are looking at the case when the open intervals $(x_1, y_1), \ldots, (x_m, y_m)$ are non-overlapping. In this case, for each fixed $j,$
at most one \(v^i_j \) can lie in \((0, 1)\) (i.e., be different from 0 or 1). It follows that each \(v^0_1 \leq \cdots \leq v^n_n \) lies in a \(n_i \)-face of \(\Delta[n] \) for some \(0 \leq n_i \leq n \) that can be chosen so that \(n_1 + \cdots + n_m \leq n \). Thus, the image of \((Z_n \times \Delta[n]) \times C_1(m) \) in \((Z_n \times \Delta[n])^m \) lands in the \(n \)th filtration level. \(\square \)

11. Constructing the filtered model and verifying the hypotheses of Section 5

In this section, we construct the functor \(T^M \) postulated in Section 5 and establish the properties stated there. Specifically, we construct \(T^M \) as a lax monoidal functor (property (i)), filtered (property (ii)) so that the filtration on \(T \) is lax monoidal (property (iii)). Moreover, we show that \(T \) is naturally isomorphic to \((-)^G\) (as functors to the stable category) via an isomorphism that takes the filtration on \(T^M \) to the Hesselholt-Madsen Tate filtration and satisfies Hypothesis 5.1.

As in Section 3, we construct the integer graded filtration out of a functor from the poset \((\mathbb{N}, \leq) \times (\mathbb{N}, \geq)\) to orthogonal spectra.

Construction 11.1. For \(i, j \in \mathbb{N} \times \mathbb{N} \), let
\[
\bar{T}_{i,j}X = (R_G(F(EG/EG_j-1, R_G(X)) \wedge \tilde{E}_{C_1}G_i))^G
\]
where \(R_G \) is a lax symmetric monoidal fibrant approximation functor, \(EG \) is the standard bar construction model, and \(C_1 \) is the Boardman-Vogt little 1-cubes operad with \(\tilde{E}_{C_1}G \) as in Construction 2.2. The filtration on \(EG \) is standard simplicial filtration when \(G \) is finite and twice that when \(G = T \), just as we used in Sections 3 and 10, and the filtration on \(\tilde{E}_{C_1}G \) is the renumbered pseudocellular filtration as defined in Definition 9.1.

Using the work of the previous two sections, \(\tilde{T}_{*,*}X \) comes with canonical maps
\[
(11.2) \quad \bar{C}_1(n)_{\mp} \wedge (\bar{T}_{i,j}X \times \cdots \times \bar{T}_{i,j}X_n) \rightarrow \bar{T}_{i,j}(X_1 \wedge \cdots \wedge X_n)
\]
for \(i_k, j_k \in \mathbb{N} \times \mathbb{N} \) and \(i = \sum i_k, j = \sum j_k \), using the maps
\[
EG/EG_j-1 \wedge \bar{C}(1)_{\mp} \rightarrow EG/EG_j-1 \times \cdots \times EG/EG_j-1, \text{ and}
\]
\[
\bar{C}(1)_{\mp} \wedge (\tilde{E}_{C_1}G_{i_1} \times \cdots \times \tilde{E}_{C_1}G_{i_n}) \rightarrow \tilde{E}_{C_1}G_{i_1}
\]
of the previous two sections. Moreover, these maps are consistent with the operadic multiplication in the obvious way. For the construction postulated in Section 5, we need to rectify the \(\bar{C}_1 \) in the formulas above to \(\bar{\text{Ass}} \); the standard trick for doing this is the Moore construction.

Construction 11.3. Let \(\tilde{T}_{*,*}X = (\bar{T}_{*,*}X) \wedge \mathbb{R}^+_{\geq} \) where \(\mathbb{R}^+_{\geq} \) denotes the set of positive real numbers. Let \(\mu_n: (\mathbb{R}^+)^n \rightarrow \bar{C}_1(1) \) be the map that takes \(\ell_1, \ldots, \ell_n \in (\mathbb{R}^+)n \) to the element of \(\bar{C}_1(1) \) consisting of the subintervals
\[
[0, \ell_1/\ell], [\ell_1/\ell, \ell_1/\ell + \ell_2/\ell], \ldots, [\ell_1/\ell + \cdots + \ell_{n-1}/\ell, 1]
\]
where \(\ell = \ell_1 + \cdots + \ell_n \). Let
\[
\mu: \tilde{T}_{i,j}^M X \wedge \tilde{T}_{i',j'}^M Y \rightarrow \tilde{T}_{i+i',j+j'}(X \wedge Y)
\]
be the map
\[
\tilde{T}_{i,j}X \times \mathbb{R}^+_{\geq} \wedge \tilde{T}_{i',j'}Y \times \mathbb{R}^+_{\geq} \rightarrow \tilde{T}_{i+i',j+j'}(X \wedge Y) \times \mathbb{R}^+_{\geq}
\]
obtained using the canonical map \(\tilde{T}_{i,j}X \wedge \tilde{T}_{i',j'}Y \to \tilde{T}_{i+i',j+j'}(X \wedge Y) \) above for
\(\mu_2: \mathbb{R}^{>0} \times \mathbb{R}^{>0} \to \mathbb{C}_1(2) \) and the map +: \(\mathbb{R}^{>0} \times \mathbb{R}^{>0} \to \mathbb{R}^{>0} \).

For example, for \(\ell_1, \ell_2 \in \mathbb{R}^{>0} \), the restriction of the map above to
\(\tilde{T}_{i,j}X \wedge \{\ell_1\}^+ \wedge \tilde{T}_{i',j'}Y \wedge \{\ell_2\}^+ \)
uses \(\mu_2(\ell_1, \ell_2) \) for the map
\[
\tilde{T}_{i,j}X \wedge \tilde{T}_{i',j'}Y \to \tilde{T}_{i+i',j+j'}(X \wedge Y)
\]
and restricts to
\[
\tilde{T}_{i,j}X \wedge \{\ell_1\}^+ \wedge \tilde{T}_{i',j'}Y \wedge \{\ell_2\}^+ \to \tilde{T}_{i+i',j+j'}(X \wedge Y) \wedge \{\ell_1 + \ell_2\}^+ .
\]
Since
\[
\mu_2(\ell_1, \mu_2(\ell_2, \ell_3)) = \mu_3(\ell_1, \ell_2, \ell_3) = \mu_2(\mu_2(\ell_1, \ell_2), \ell_3)
\]
and +: \(\mathbb{R}^{>0} \times \mathbb{R}^{>0} \to \mathbb{R}^{>0} \) is associative, the diagram
\[
\begin{array}{ccc}
\tilde{T}_{i,j}^M X \wedge \tilde{T}_{i',j'}^M Y \wedge \tilde{T}_{i''',j'''}^M Z & \xrightarrow{id \wedge \mu} & \tilde{T}_{i,j}^M X \wedge (\tilde{T}_{i',j'}^M \wedge \tilde{T}_{i'',j''}^M)(Y \wedge Z) \\
\mu \wedge id & & \mu \\
\tilde{T}_{i+i',j+j'}^M (X \wedge Y) \wedge \tilde{T}_{i''',j'''}^M Z & \xrightarrow{\mu} & \tilde{T}_{i+i+i'',j+j+j''}^M (X \wedge Y \wedge Z)
\end{array}
\]
commutes for all orthogonal \(G \)-spectra \(X, Y, Z \), and all \(i, i', i'', j, j', j'' \geq 0 \).

Construction 11.4. Define the filtered spectrum \(T^M_*X \) as
\[
T^M_n X = \text{hocolim}_{i-j \leq n} T^M_{i,j} X
\]
using the bar construction model for homotopy colimit as in Section 3. Let \(T^M_*X = \text{colim}_n T^M_n X \).

As in Proposition 3.7, \(T^M_*X \) is reasonably filtered. The maps
\[
\tilde{T}^M_{i,j} X \longrightarrow (R_G(EG_+, R_G(X)) \wedge \tilde{E}_G(C)) = T^M_{i,j} X
\]
therefore induce a weak equivalence \(T^M_*X \to T_G X \).

By construction \(T^M_* \) inherits an associative pairing
\[
\mu: T^M_* X \wedge T^M_* Y \to T^M_* (X \wedge Y)
\]
in the category of filtered spectra. To make this pairing unital as well, we need a slight modification that takes as input a unital spectrum.

Construction 11.5. For \(X \) an orthogonal \(G \)-spectrum under \(S \), we have a canonical map \(S \to \tilde{T}_{0,0}X \) and whence a map \(S \to \tilde{T}_{i,0}X \) for \(i \geq 0 \). Let
\[
\tilde{T}^M_{i,j} X = \tilde{T}^M_{i,0} X = \tilde{T}_{i,j} X \wedge \mathbb{R}^{>0}_+
\]
for \(j > 0 \) and define \(\tilde{T}^M_{i,0} X \) as the pushout
\[
\begin{array}{ccc}
S \wedge \mathbb{R}^{>0}_+ & \longrightarrow & \tilde{T}^M_{i,0} X \wedge \mathbb{R}^{>0}_+ \\
\downarrow & & \downarrow \\
S \wedge \mathbb{R}^{>0}_+ & \longrightarrow & \tilde{T}^M_{i,0} X
\end{array}
\]
where $\mathbb{R}^{\geq 0}$ denotes the space of non-negative real number. Define $T_*^\infty X$ by $T_*^\infty X = \text{hocolim}_{i-j \leq n} \bar{T}_{i,j}^\infty X$ and let $T^\infty X = \text{colim}_n T_n^\infty X$.

The lax associative pairing on $\bar{T}_{*,*}^\infty$ extends to $\bar{T}_{*,*}^M$ where it is now lax monoidal using the canonical map
\[S \cong S \otimes \{0\}_+ \longrightarrow \bar{T}_{0,0}^M(S) \]
as unit. We then get a lax symmetric monoidal structure on the functor T_*^M. This gives the first part of the following theorem, which shows that T_*^M satisfies the hypotheses required for the argument of Section 5.

Theorem 11.6. T_*^M is a lax monoidal functor from orthogonal G-spectra under S to reasonably filtered spectra, is naturally isomorphic to the Tate functor in the homotopy category of filtered spectra, and satisfies Hypothesis 5.1.

Proof. We constructed the lax symmetric monoidal structure above. For the comparison we note that the inclusion of S in $T_{0,0}^\infty X$ and the collapse map $\mathbb{R} \rightarrow 0$ induce a natural transformation
\[\bar{T}_{i,j}^M X \longrightarrow \bar{T}_{i,j} X \]
of functors from orthogonal G-spectra to functors from $\mathbb{N}, \leq \times (\mathbb{N}, \geq)$ to orthogonal spectra. This map is a weak equivalence for all X; see [25, 6.2] (or Proposition 18.2 below).

To verify Hypothesis 5.1, we let
\[TTX = T_{0,0}^\infty X \cup_{T_{0,1}^\infty X} (\bar{T}_{0,1}^\infty X \otimes I), \]
the standard model of the homotopy cofiber (where we use 1 as the basepoint of I). This functor has a monoidal structure coming from the unit of $T_{0,0}^\infty$ and the pairing on $T_{*,*}^\infty$ and the pairing max on I. This is canonically isomorphic as a monoidal functor (reversing the direction of the interval) to the quotient of the categorical bar construction homotopy colimit for the diagram
\[\bar{T}_{0,1}^M X \longrightarrow \bar{T}_{0,0}^M X \]
by the inclusion of $T_{0,1}^\infty X$. We then have a natural transformation of monoidal functors $TT \rightarrow (T_{0,0}^M / T_{1,1}^M)$ induced by the inclusion of the diagram $T_{0,0}^M$ and $T_{0,1}^M$.

We define
\[\text{RRX} = (RG(F((EG_0)_+, RG X)))^G. \]
We then have the monoidal natural transformation
\[i^* X \longrightarrow i^* RG RG X \longrightarrow (RG(F((EG_0)_+, RG X))^G = \text{RRX}. \]

To construct the map $TTX \rightarrow \text{RRX}$, we use the map
\[\bar{T}_{0,0}^M X \longrightarrow \bar{T}_{0,0} X = (RG(F(EG+, RG X) \otimes S))^G \]
\[\longrightarrow (RG(F((EG_0)_+, RG X) \otimes S))^G \cong \text{RRX} \]
Since
\[F(EG/EG_0, RG X) \rightarrow F(EG_+, RG X) \rightarrow F(EG_0+, RG X) \]
is a point-set fiber sequence, we see that the map $TTX \rightarrow \text{RRX}$ is a weak equivalence. The composite map $\bar{T}_{0,1}^M X \rightarrow \text{RRX}$ factors through
\[(RG(F(EG/EG_0, RG X) \otimes S))^G, \]
and therefore is the point-set trivial map. As a consequence, the natural transformation $TT \to RR$ factors through the monoidal natural transformation $TT \to \bar{T}_0^M/\bar{T}_1^M$. Thus, it remains to show that the transformation $\bar{T}^M_{0,0} \to RR$ is monoidal, but this is clear because the coaction of O^Σ_T on the zeroth filtration level of EG is the diagonal.

\[\square \]

12. The E^1-term of the Hesselholt-Madsen \mathbb{T}-Tate spectral sequence

In this section we prove Lemma 3.16 and Theorems 3.17 and 3.19. All three results require a careful study of the filtration, and this is where we begin. In this section, $E^1_{i,j}(X)$ will always refer to the E^1-term of the Hesselholt-Madsen Tate spectral sequence for an orthogonal \mathbb{T}-spectrum X.

Our calculation of the E^1-term will use a filtration on $X^{ET} \wedge \bar{E}_T$ corresponding to the Hesselholt-Madsen Tate filtration before taking \mathbb{T}-fixed points. Let

\[\bar{U}X_{i,j} = F(ET/E^n_j - 1, R_T X) \wedge \bar{E}_T \]

and let

\[\bar{U}_n X = \operatorname{hocolim} \bar{U}X_{i,j}, \quad \bar{U}_n X = \operatorname{hocolim} R_T \bar{U}X_{i,j}. \]

Because the point-set fixed point functor commutes with the categorical bar construction of homotopy colimits and the derived fixed point functor commutes with homotopy colimits, we have the following proposition.

Proposition 12.1. The canonical map $(\bar{U}_n X)^\mathbb{T} \to \bar{T}_n X$ is an isomorphism and the canonical map $(R_T(\bar{U}_n X))^\mathbb{T} \to (\bar{U}_n X)^\mathbb{T}$ is a weak equivalence.

This proposition then gives a canonical identification of the E^1-term of the Hesselholt-Madsen Tate spectral sequence for X as

\[E^1_{i,j}(X) = \pi^\mathbb{T}_{i+j}(\bar{U}_i X/\bar{U}_{i-1} X), \]

with pairing induced by the pairing on $\bar{U}_*(\bar{U}_*)$ (itself induced by the pairing on $\bar{U}_*(-_* \cdot *)$). We can now dispense with $\bar{T}_i X$, $T_\mathbb{T}X_{i,j}$, and $\bar{U}_* X$ and work exclusively with the equivariant \mathbb{T}-spectra $\bar{U}_* (-)$ and $(\bar{U}_*)_\mathbb{T}$.

To study the filtration quotients $\bar{U}_i X/\bar{U}_{i-1} X$, we need another homotopy colimit. Let

\[\bar{U}X_{m,n}^{\leq \geq} = \operatorname{hocolim}_{i \leq m, j \geq n} \bar{U}X_{i,j}. \]

Since m,n is the final object in the category in the homotopy colimit, the inclusion $\bar{U}X_{m,n} \to \bar{U}X_{m,n}^{\leq \geq}$ is a homotopy equivalence of orthogonal \mathbb{T}-spectra. It is easy to see that for $n \geq 0$

\[\bar{U}_n X = (\bar{U}X_{n,0}^{\leq \geq}) \cup (\bar{U}X_{n,1}^{\leq \geq}) \cup (\bar{U}X_{n+1,2}^{\leq \geq}) \cup (\bar{U}X_{n+2,3}^{\leq \geq}) \cup \cdots \]

and for $n \leq 0$

\[\bar{U}_n X = (\bar{U}X_{0,n}^{\leq \geq}) \cup (\bar{U}X_{0,-n+1}^{\leq \geq}) \cup (\bar{U}X_{1,-n+2}^{\leq \geq}) \cup (\bar{U}X_{2,-n+3}^{\leq \geq}) \cup \cdots \]

This gives us what we need to prove Lemma 3.16, conditional convergence of the Hesselholt-Madsen Tate spectral sequence.
Proof of Lemma 3.16. Using the weak equivalence

\[\tilde{U}X_{i,j} = F(E_T/E_{T_{i-1}}, R_T X) \wedge \tilde{E}_T^i \]

\[\simeq (X^{\text{ET}} \wedge L S^{-j \cdot \text{C}(1)} \wedge L S^{i \cdot \text{C}(1)}) \simeq (X^{\text{ET}} \wedge L S^{i+j \cdot \text{C}(1)}), \]

we see in particular that \(\tilde{U}_n X \) is weakly equivalent to the cofiber of a map

\[\bigvee_{\ell \geq 0} X^{\text{ET}} \wedge L S^{(n-1) \cdot \text{C}(1)} \to \bigvee_{\ell \geq 0} X^{\text{ET}} \wedge L S^{n \cdot \text{C}(1)} \]

where the map on the \(\ell \)th summand is the Greenlees Tate inclusion into the \(\ell \)th summand minus the Greenlees Tate inclusion into the \((\ell + 1)\)st summand. Conditional convergence in the sense of [7, 5.10] is equivalent to showing that \(\text{holim}_n (R_T \tilde{U}_n X)^T \simeq * \). Because of the identification of \(\tilde{U}_n X \) as a homotopy cofiber above, it suffices to show

\[\text{holim}_n \left(\bigvee (X^{\text{ET}} \wedge L S^{-(n \cdot \text{C}(1))})^T \right) \simeq * \]

or, equivalently,

\[\text{holim}_n \left(\bigvee ((X^{\text{ET}})^T / E_{T_{2n-1}})^T \right) \simeq * \]

This is clear when \(\pi_* X^{\text{ET}} \) is bounded above and follows in the general by considering the Postnikov tower for \(X^{\text{ET}} \).

Returning to the discussion of the quotients \(\tilde{U}_i X / \tilde{U}_{i-1} X \), the work above allows us to identify these in terms of the double homotopy cofibers of maps for the \(\tilde{U}_X_{i,j} \).

Writing \(C(B, A) \) for the homotopy cofiber of an understood map \(A \to B \), we have that for \(i > 0 \), \(\tilde{U}_i X / \tilde{U}_{i-1} X \) is weakly equivalent to the cofiber of the inclusion

\[(\tilde{U}X_{i-1,0}) \cup (\tilde{U}X_{i,1}) \cup (\tilde{U}X_{i,2}) \cup \cdots \to \tilde{U}_i X = (\tilde{U}X_{i,0}) \cup (\tilde{U}X_{i,1}) \cup (\tilde{U}X_{i,2}) \cup \cdots \]

which is easily seen to be the wedge of double homotopy cofibers

\[\bigvee_{n \geq 0} C(C(\tilde{U}X_{i+n,n}, \tilde{U}X_{i+n-1,n}), C(\tilde{U}X_{i+n,n+1}, \tilde{U}X_{i+n-1,n+1})). \]

Similarly, for \(i \leq 0 \), \(\tilde{U}_i X / \tilde{U}_{i-1} X \) is weakly equivalent to the wedge

\[C(\tilde{U}X_{0,-i}, \tilde{U}X_{0,-i+1}) \cup \bigvee_{n \geq 0} C(C(\tilde{U}X_{n,n-i}, \tilde{U}X_{n-1,n-i}), C(\tilde{U}X_{n,n-i+1}, \tilde{U}X_{n-1,n-i+1})). \]

(The difference in formulas arises because when \(i > 0 \), \(\tilde{U}X_{i,0} \) admits maps from \(\tilde{U}X_{i-1,0} \) and \(\tilde{U}X_{i,1} \), whereas when \(i \leq 0 \), \(\tilde{U}X_{0,-i} \) only admits a map from \(\tilde{U}X_{0,-i+1} \).)

For convenience of later reference, we will use the following abbreviations

\[C \tilde{U}X_n = C(\tilde{U}X_{0,n}, \tilde{U}X_{0,n+1}) \]

\[C C \tilde{U}X_{m,n} = C(C(\tilde{U}X_{m,n}, \tilde{U}X_{m-1,n}), C(\tilde{U}X_{m,n+1}, \tilde{U}X_{m-1,n+1})). \]
We note that since the pairing on $\bar{U}_*(-)$ is induced by the pairing on $\bar{U}(-)_{*,*}$, the pairings on the associated graded is the wedge of pairings on the pieces

$$CC\bar{U}X_{m,n} \land CC\bar{U}Y_{m',n'} \rightarrow CC\bar{U}(X \land Y)_{m+m',n+n'}$$

$$C\bar{U}X_n \land CC\bar{U}Y_{m',n'} \rightarrow CC\bar{U}(X \land Y)_{m',n+n'}$$

$$CC\bar{U}X_{m,n} \land C\bar{U}Y_{n'} \rightarrow CC\bar{U}(X \land Y)_{m,n+n'}$$

$$C\bar{U}X_n \land C\bar{U}Y_{n'} \rightarrow C\bar{U}(X \land Y)_{n+n'}.$$ \hfill (12.3)

We proceed by studying these pairings; results translate back to E^1-terms using the identification

$$\bigoplus_{i,j} E^1_{i,j}(X) = \bigoplus_{n \geq 0} \pi_q^T(C\bar{U}X_n) \oplus \bigoplus_{m > 0, n \geq 0} \pi_q^T(CC\bar{U}X_{m,n})$$ \hfill (12.4)

where the n, q summand on the right lies in the $i = n$, $j = q + n$ summand on the left and the m, n, q summand on the right lies in the $i = m - n$, $j = q - m + n$ summand on the left.

We have canonical identifications of the homotopy cofibers

$$C(\bar{U}X_{2m,2n}, \bar{U}X_{2m-2,2n}) \simeq F(ET/E\mathbb{T}_{2n-1}, R_{\mathbb{T}}X) \land (S^{C(1)^m}/S^{C(1)^{m-1}})$$

$$C(\bar{U}X_{2m,2n}, \bar{U}X_{2m+1,2n+1}) \simeq F(ET_{2n}/E\mathbb{T}_{2n-1}, R_{\mathbb{T}}X) \land S^{C(1)^m},$$

while the cofibers are trivial if m or n is odd. This gives the identification of the double homotopy cofibers

$$CC\bar{U}X_{2m,2n} = C(C(\bar{U}X_{2m,2n}, \bar{U}X_{2m-2,2n}), C(\bar{U}X_{2m,2n+1}, \bar{U}X_{2m+1,2n+1}))$$

$$\simeq F(ET_{2n}/E\mathbb{T}_{2n-1}, R_{\mathbb{T}}X) \land (S^{C(1)^m}/S^{C(1)^{m-1}}).$$

Since $ET_{2n}/E\mathbb{T}_{2n-1}$ and $S^{C(1)^m}/S^{C(1)^{m-1}}$ are all of the form $\mathbb{T}_+ \land Z$ for some based \mathbb{T}-spaces Z (depending on m or n), the associated graded pieces $\bar{U}_iX/\bar{U}_{i-1}X$ are all (non-canonically) of the form $\mathbb{T}_+ \land Z$ for some spectra Z. The next step is to review the relationship between the homotopy groups π_* and $\pi_*^{\mathbb{T}}$ of such spectra.

Writing $\pi_*^{\mathbb{T}}(\mathbb{T})$ for the stable homotopy groups of \mathbb{T}_+, the inclusion of the unit $S^0 \rightarrow \mathbb{T}_+$ and the collapse map $\mathbb{T}_+ \rightarrow S^0$ induce a canonical splitting

$$\pi_*^{\mathbb{T}}(\mathbb{T}) \cong \pi_* S \oplus \pi_*(SS).$$

We denote the canonical generator in $\pi_0^{\mathbb{T}}(\mathbb{T})$ as 1 and the generator in $\pi_0^{\mathbb{T}}(\mathbb{T})$ (determined by the orientation by \mathbb{T} as the unit complex numbers) as σ; the multiplication on \mathbb{T} makes $\pi_*^{\mathbb{T}}(\mathbb{T})$ a graded ring, and 1 is the unit in this structure. It is well-known (and essentially the definition of the Hopf invariant) that the element σ satisfies $\sigma^2 = \eta \sigma$ where η denotes the non-zero element of $\pi_1 S \cong \mathbb{Z}/2$. For any orthogonal \mathbb{T}-spectrum X, we then have a canonical action of $\pi_*^{\mathbb{T}}(\mathbb{T})$ on $\pi_* X$, or equivalently, a degree 1 operator σ satisfying $\sigma^2 x = \eta \sigma x$.

Proposition 12.5. Let X be an orthogonal \mathbb{T}-spectrum which is isomorphic in the equivariant stable category to $\mathbb{T}_+ \land Z$ for some orthogonal \mathbb{T}-spectrum Z. Then the map $\pi_*^{\mathbb{T}}X \rightarrow \pi_* X$ is injective and is surjective onto the kernel of multiplication by σ, which is equal to the image of multiplication by $\sigma + \eta$.

Proof. The image of $\pi_*^{\mathbb{T}}X$ in $\pi_* X$ is clearly contained in the kernel of multiplication by σ. The kernel of multiplication by σ clearly contains the image of multiplication by $\sigma + \eta$; an easy calculation shows that they are equal under the hypotheses.
It suffices to consider the case when Z comes from a non-equivariant orthogonal spectrum (using the isomorphism between the diagonal action and the action on just T). In the case $Z = S$, the transfer map
\[\pi_* S \longrightarrow \pi_*(T_+ \wedge S) \longrightarrow \pi_*(T_+ \wedge S) \cong \pi_*(T) \]
takes the fundamental class of $\pi_* S$ to the element $\sigma + \eta 1$, and the theorem follows in this case. For arbitrary Z, naturality of the transfer map implies that
\[\pi_* Z \longrightarrow \pi_*(T_+ \wedge Z) \longrightarrow \pi_*(T_+ \wedge Z) \cong \pi_*(T) \otimes_{\pi_* \pi_* Z} \]
takes an element $x \in \pi_n Z \cong \pi_{n+1} Z$ to $(\sigma + \eta 1) \otimes x = (\sigma + \eta)(1 \otimes x)$. \qed

Now we are ready to begin identifying elements in $\pi_*(CUS_n)$ and $\pi_*(CUS_{m,n})$; we can then apply Proposition 12.5 (and (12.4)) to compute the $E^2_{s,t}(S)$ and with some more work, $E^1_{s,t}(X)$ for general X. Using the canonical orientation on $S^{C(1)^m}$, we get canonical generators
\[
am \in \pi_{2m-1} \Sigma \infty (S^{C(1)^m}/S^{C(1)^{m-1}}), \quad \n \in \pi_{2m} \Sigma \infty (S^{C(1)^m}/S^{C(1)^{m-1}})\]
where b_n is the image of the fundamental class of $S^{C(1)^m}$ and a_m maps to the fundamental class in $S^{C(1)^{m-1}}$; $\pi_* \Sigma \infty (S^{C(1)^m}/S^{C(1)^{m-1}})$ is then the free $\pi_* S$-module generated by a_m and b_n. In terms of the action of $\pi^2_*(T)$, it is easy to see geometrically that $\sigma a_1 = b_1$. Using the cofiber sequence
\[T_+ \longrightarrow S^0 \longrightarrow S^{C(1)} \longrightarrow S^{C(1)}/S^0 \cong \Sigma T_+ \]
we see that $\sigma b_1 = \eta b_1$; the identification
\[S^{C(1)^m}/S^{C(1)^{m-1}} \cong (S^{C(1)^{m-1}} \wedge (S^{C(1)}/S^0) \]
shows that in general
\[
\sigma a_m = b_m + (m-1) \eta a_m \\
\sigma b_m = m \eta b_m, \]
To produce corresponding formulas for $F(ET_{2n}/ET_{2n-1}, R_0 S)$, we use the following lemma proved in the next section.

Lemma 12.6. There exists a unique system of isomorphisms in the Borel stable category $ET/E_{T_{2n-1}} \cong ET_+ \wedge S^{C(1)^n}$ such that:

(i) The diagram
\[
\begin{array}{ccc}
ET/E_{T_{2n-1}} & \longrightarrow & ET/E_{T_{2n-1}} \wedge ET/E_{T_{2j-1}} \\
\cong \downarrow & & \cong \downarrow \\
ET_+ \wedge S^{C(1)^n} & \longrightarrow & (ET_+ \wedge S^{C(1)^j}) \wedge (ET_+ \wedge S^{C(1)^j})
\end{array}
\]

commutes for all $i + j = n$, where the lefthand vertical map is induced by the filtered approximation to the diagonal on ET constructed in Section 9 and the righthand vertical map is induced by the diagonal on ET and the homeomorphism
\[S^{C(1)^n} \cong S^{C(1)^{i+j}} \cong S^{C(1)^i \oplus C(1)^j} \cong S^{C(1)^i} \wedge S^{C(1)^j}. \]
(ii) The diagram
\[
\begin{array}{ccc}
ET/ET_{m-1} & \rightarrow & ET/ET_m \\
\cong & & \cong \\
ET_+ \wedge S^{C(1)^m} & \rightarrow & ET_+ \wedge S^{C(1)^{m+1}}
\end{array}
\]
commutes for \(m = 0 \), where the bottom right map is induced by the inclusion of \(C(1)^m \) in \(C(1)^{m+1} \) as the first \(m \) coordinates.

Moreover, the diagram in (ii) commutes for all \(m \geq 0 \).

The lemma gives us a canonical weak equivalence
\[
F(ET/ET_{2m-1}, R_S X) \simeq X^{ET} \wedge L S^{-mC(1)},
\]
and we then define generators \(a'_m, b'_m \) for \(\pi_* F(ET_{2m}/ET_{2m-1}, R_S S) \) as above. Namely, \(b'_m \) is the generator of \(\pi_{-2m} \) in the image of the fundamental class of
\[
\pi_{-2m} F(ET/ET_{2m-1}, R_S S) \cong \pi_{-2m}(S^{ET} \wedge L S^{-mC(1)}) \cong \pi_{-2m} S^{-mC(1)}
\]
and \(a'_m \) is the generator of \(\pi_{-2m-1} \) that maps to the fundamental class of
\[
\pi_{-2m-2} F(ET/ET_{2m}, R_S S) = \pi_{-2m-2} F(ET/ET_{2m+1}, R_S S) \cong \pi_{-2m-2} S^{-(m+1)C(1)}.
\]
As above, we have
\[
\sigma a'_m = b'_m + (-m - 1)\eta a'_m = b'_m + (m - 1)\eta a'_m
\]
\[
\sigma b'_m = -m\eta b'_m.
\]

Using the elements introduced above, we can identify the homotopy groups of \(C\bar{C}U X_{m,n} \) as
\[
\pi_*(C\bar{C}U X_{m,n}) \cong \pi_*(S(a'_m', b'_m')) \otimes_{\pi_* S} \pi_*(a_m, b_m) \otimes_{\pi_* S} \pi_* X
\]
using the map
\[
\pi_*(F(ET_{2n}/ET_{2n-1}, R_S S)) \otimes_{\pi_* S} \pi_* S^{C(1)^m}/S^{C(1)^{m-1}} \otimes_{\pi_* S} \pi_* X
\]
\[
\rightarrow \pi_*(F(ET_{2n}/ET_{2n-1}, R_S S) \wedge (S^{C(1)^m}/S^{C(1)^{m-1}}) \wedge X)
\]
\[
\rightarrow \pi_*(F(ET_{2n}/ET_{2n-1}, R_S X) \wedge (S^{C(1)^m}/S^{C(1)^{m-1}})) = \pi_*(C\bar{C}U X_{m,n}),
\]
where \(\pi_* S(-) \) denotes the free \(\pi_* S \)-module on the given generators (in their natural degrees). We likewise have
\[
\pi_*(C\bar{C}U X_n) \cong \pi_* S(a'_m', b'_m') \otimes_{\pi_* S} \pi_* X.
\]

We next describe the pairing for \(X = S \). The induced pairing on homotopy groups of summand pairing of (12.3) now takes the form
\[
\pi_* S(a'_m, b'_m) \otimes_{\pi_* S} \pi_* S(a_m, b_m) \otimes_{\pi_* S} \pi_* S(a'_m, b'_m)
\rightarrow \pi_* S(a'_m, b'_m') \otimes_{\pi_* S} \pi_* S(a_m+b_m).
\]
and similar formulas for the other three pairings, dropping either \((a_m, b_m) \), \((a_m', b_m') \), or both tensor factors.

Looking at the pairing on \(\bar{U} S_{m,n} \), it is clear that the pairing on the \(F(ET/ET_{2n-1}, R_S S) \)-part and on the \(S^{mC(1)} \)-part are independent of each other; Lemma 12.6 describes what happens on the former, and on the latter it is given by the usual isomorphism
\[
S^{mC(1)} \wedge S^{m'C(1)} \simeq S^{(m+m')C(1)}.
\]
This implies that for the pairings above we have $b'_n \otimes b'_m \mapsto b'_{n+m}$ and $b_m \otimes b_m \mapsto b_{m+m'}$. In addition, we see that $a'_n \otimes a'_m \mapsto 0$ and $a_m \otimes a_m \mapsto 0$ for dimension reasons. Since the pairings on the spectrum level are T-equivariant, the algebraic maps above commute with the action of σ, and so we see

$$\sigma(a_m \otimes a_m') = (\sigma a_m) \otimes a_m' - a_m \otimes (\sigma a_m') = b_m \otimes a_m' - a_m \otimes b_m' + (m-m')\eta a_m \otimes a_m',$$

we see $b_m \otimes a_m' \mapsto a_m + a_m$. The same observations apply to $b'_n \otimes a'_m$, and $a'_n \otimes b'_m$ to show that these both map to a'_{n+m}. We summarize this in the following proposition.

Proposition 12.7. The pairings of homotopy groups π_* induced by (12.3) are induced by the tensor products of the maps

$$b'_n \otimes b'_m \mapsto b'_{n+m}, \quad b_m \otimes b_m' \mapsto b_{m+m'},$$

$$b'_n \otimes a'_m \mapsto a'_{n+m}, \quad b_m \otimes a_m' \mapsto a_{m+m'},$$

$$a'_n \otimes b'_m \mapsto a'_{m+n}, \quad a_m \otimes b_m' \mapsto a_{m+m'},$$

$$a'_n \otimes a'_m \mapsto 0, \quad a_m \otimes a_m' \mapsto 0.$$

We see from the formulas above that $b_0 \in \pi_0(C\widetilde{U}_2)$ acts by the identity and satisfies $\sigma b_0 = 0$, and so gives the identity element of $E_{1,0}^1(S)$. We now identify some other key elements of $\pi_*(\widetilde{U}_2/\widetilde{U}_{S_i-1})$.

Notation 12.8. Let

$$\bar{x} = b'_0 \otimes b_1 + \eta b'_0 \otimes a_1, \quad \bar{x} \in \pi_2(C\widetilde{U}_2S_0)$$

$$\bar{y} = a'_0 \otimes b_1 - b'_0 \otimes a_1, \quad \bar{y} \in \pi_1(C\widetilde{U}_2S_0)$$

$$\bar{z} = b'_1 + \eta a'_1, \quad \bar{z} \in \pi_{-2}(\widetilde{U}_2S_2).$$

Applying the formulas for the action of σ and using Proposition 12.5 to identify π_*^Σ as a subset of π_* for $CC\widetilde{U}_2S_0$ and $C\widetilde{U}_2S_2$, we define elements x, y, z in $E_{1,*}^1(S)$ as follows.

Proposition 12.9. The elements $\bar{x}, \bar{y}, \text{ and } \bar{z}$ lift to (unique) elements

$$x \in \pi_2^\Sigma(C\widetilde{U}_2S_0) \subset E_{2,0}^1(S)$$

$$y \in \pi_1^\Sigma(C\widetilde{U}_2S_0) \subset E_{2,-1}^1(S)$$

$$z \in \pi_{-2}^\Sigma(\widetilde{U}_2S_2) \subset E_{1,-2,0}^1(S).$$

We can now prove Theorems 3.17 and 3.19.

Proof of Theorem 3.17. Elanding notation for the distinction between an element of π_*^Σ and its image in π_*, the multiplication formulas of Proposition 12.7 give us

$$x^m = b'_0 \otimes b_m + m\eta b'_0 \otimes a_m$$

$$y^2 = 0$$

$$z^n = b'_n + \eta a'_n.$$

From here we see

\[x^m z^n = b'_n \otimes b_m + m \eta a'_n \otimes b_m + m \eta b'_n \otimes a_m + mm \eta^2 a'_n \otimes a_m \]

\[x^m y = a'_n \otimes b_{m+1} - b'_n \otimes a_{m+1} + m \eta a'_n \otimes a_{m+1} \]

\[x^m y z^n = a'_n \otimes b_{m+1} - b'_n \otimes a_{m+1} + (n + m) \eta a'_n \otimes a_{m+1} \]

\[y z^n = a'_n \otimes b_1 - b'_n \otimes a_1 + m \eta a'_n \otimes a_1 \]

for \(m > 0, n \geq 0 \). Since \(\{ a'_n \otimes a_m, a'_n \otimes b_m, b'_n \otimes a_m, b'_n \otimes b_m \} \) is a set of generators for the free \(\pi_\ast \mathbb{S} \)-module \(\pi_\ast(\text{CC}U\mathbb{S}_{m,n}) \) and \(\{ a'_n, b'_n \} \) is a set of generators for the free \(\pi_\ast \mathbb{S} \)-module \(\pi_\ast(\text{C}U\mathbb{S})_n \), we see from the formulas above that the map from the free graded commutative \(\mathbb{S} \)-algebra on \(\bar{x}, \bar{y}, \bar{z} \) modulo \(\bar{y}^2 = 0 \) injects into

\[\bigoplus_{n \geq 0} \pi_\ast(\text{C}U\mathbb{S}_{n}) \oplus \bigoplus_{m > 0, n \geq 0} \pi_\ast(\text{CC}U\mathbb{S}_{m,n}) \]

and it follows that it injects into

\[\bigoplus_{n \geq 0} \pi^T_\ast(\text{C}U\mathbb{S}_{n}) \oplus \bigoplus_{m > 0, n \geq 0} \pi^T_\ast(\text{CC}U\mathbb{S}_{m,n}) \]

To see it is surjective, we note that by Proposition 12.7, the elements

\[
(\sigma + \eta)(b'_n \otimes b_m) = (n + m + 1)\eta b'_n \otimes b_m \quad (\sigma + \eta)b'_n = (n + 1)\eta b'_n
\]

\[
(\sigma + \eta)(b'_n \otimes a_m) = b'_n \otimes b_m + (n + m)\eta b'_n \otimes a_m \quad (\sigma + \eta)a'_n = b'_n + m\eta a'_n
\]

\[
(\sigma + \eta)(a'_n \otimes b_m) = b'_n \otimes b_m + (n + m)\eta a'_n \otimes b_m
\]

\[
(\sigma + \eta)(a'_n \otimes a_m) = b'_n \otimes a_m - a'_n \otimes b_m + (n + m - 1)\eta a'_n \otimes a_m
\]

generate \(\pi^T_\ast(\text{CC}U\mathbb{S}_{m,n}) \) (in the left column) and \(\pi^T_\ast(\text{C}U\mathbb{S}_{n}) \) (in the right column) as \(\pi_\ast \mathbb{S} \)-modules. From this we see that

- \(x^n, y^n \) generate \(\pi^T_\ast(\text{CC}U\mathbb{S})_{1,n} \) for \(n \geq 0 \);
- \(x^m z^n, x^{m-1} y z^n \) generate \(\pi^T_\ast(\text{CC}U\mathbb{S}_{m,n}) \) for \(m > 1, n \geq 0 \);
- \(z^n \) generates \(\pi^T_\ast(\text{C}U\mathbb{S}_{n}) \) for \(n \geq 0 \).

The theorem now follows from (12.4).

\[\square \]

Proof of Theorem 3.19. The cofiber \(\text{C}U X_0 \) of \(\text{U} X_{0,1} \to \text{U} X_{0,0} \) has a canonical weak equivalence to \(R_T F(ET \mathbb{T}, X) = R_T(T, R_T X) \). The map

\[i^* X \longrightarrow R_T(T, R_T X)^\vee \longrightarrow i^* R_T(T, R_T X) \simeq RF(T_+, i^* X) \]

in the non-equivariant stable category is adjoint to the \(T \)-action map

\[T_+ \wedge i^* X \longrightarrow i^* X, \]

so the map

\[\pi^S_\ast T \otimes_{\pi_\ast \mathbb{S}} \pi_\ast X \longrightarrow \pi^S_\ast \otimes_{\pi_\ast \mathbb{S}} \pi_\ast(\text{C}U X_0) \longrightarrow \pi_\ast X \]

sends \(1 \otimes x \) to \(x \) and \(\sigma \otimes x \) to \(\sigma x \), where the second map is induced by the counit (evaluation)

\[T_+ \wedge RF(T_+, i^* X) \longrightarrow i^* X. \]

We note that the evaluation map is \(T \)-equivariant and so in the case of \(X = \mathbb{S} \) satisfies

\[
1 \otimes b'_0 \mapsto 1 \quad 1 \otimes a'_0 \mapsto 0
\]

\[
\sigma \otimes b'_0 \mapsto 0 \quad \sigma \otimes a'_0 \mapsto -1
\]
satisfies the following formulas

\[\pi^* (C \tilde{U} X_0) \cong \pi_* S(a'_0, b'_0) \otimes_{\pi_*} \pi_* X, \]

we therefore have that the map \(\pi_* X \to \pi_* (C \tilde{U} X_0) \) satisfies the formula

\[v \mapsto b'_0 \otimes v - a'_0 \otimes \sigma v. \]

By Proposition 12.7, we see that the map in the statement

\[HM_{s,*} \otimes \pi_* X \to E^1_{s,*}(X) \]

satisfies the following formulas

\[
\begin{align*}
 z^n \otimes v &\mapsto (b_n + n\eta a'_n) \otimes v - a'_n \otimes \sigma v \\
 x^m z^n \otimes v &\mapsto (b'_n \otimes b_m + n\eta a'_n \otimes b_m + mn b'_n \otimes a_m + mn^2 a'_n \otimes a_m) \otimes v \\
 &\quad - (a'_n \otimes b_m + mn a'_n \otimes a_m) \otimes \sigma v \\
 x^m y z^n \otimes v &\mapsto (a'_n \otimes b_{m+1} - b'_n \otimes a_{m+1} + (n + m) \eta a'_n \otimes a_{m+1}) \otimes v \\
 &\quad + a'_n \otimes a_{m+1} \otimes \sigma v \\
 y z^n \otimes v &\mapsto (a'_n \otimes b_1 - b'_n \otimes a_1 + n \eta a'_n \otimes a_1) \otimes v + a'_n \otimes a_1 \otimes \sigma v
\end{align*}
\]

(12.10)

for all \(m > 0, n \geq 0 \), from which it is clear that the map is injective. Surjectivity follows from looking at the image of multiplication by \(\sigma + \eta \) just as in the proof of Theorem 3.17 above.

The bimodule statement follows from the monoidality statement, which we now check. For \(v \in \pi_* X, w \in \pi_* Y \), and writing \(v \wedge w \) for the smash product element in \(\pi_* (X \wedge Y) \), the map

\[(HM_s \otimes \pi_* X) \otimes (HM_s \otimes \pi_* Y) \to E^1_{s,*}(X) \otimes E^1_{s,*}(Y) \to E^1_{s,*}(X \wedge Y) \]

takes \((1 \otimes v) \otimes (1 \otimes w) \) to

\[
(b'_0 \otimes v - a'_0 \otimes \sigma v)(b'_0 \otimes w - a'_0 \otimes \sigma w) \\
= b'_0 \otimes (v \wedge w) - a'_0 \otimes ((\sigma v) \wedge w) - (-1)^{|v|} a'_0 \otimes (v \wedge (\sigma w)) \\
= b'_0 \otimes (v \wedge w) - a'_0 \otimes \sigma(v \wedge w).
\]

This agrees with the image of \(v \otimes w \) under the map

\[(HM_{s,*} \otimes \pi_* X) \otimes (HM_s \otimes \pi_* Y) \to HM_{s,*} \otimes \pi_* (X \wedge Y) \to E^1_{s,*}(X \wedge Y) \]

induced by the multiplication on \(HM_s \). More generally, for any \(\alpha \in HM_s \), both maps send \((1 \otimes x) \otimes (\alpha \otimes y) \) to the same element of \(E^1_{s,*}(X \wedge Y) \). The monoidality statement follows.

The non-multiplicative identification of the \(E^1 \)-term at the end of Section 3 has explicit formula given by (12.10), where the \(m \)th summand of \(\pi_j X \) and \(\pi_{j+1} X \) are given by the formulas \(x^i z^m, x^{i+m-1} y z^m \), respectively, for \(i > 0 \), and by \(x^m z^i, x^{m-1} y z^{i+m} \), respectively, for \(i \leq 0 \), where in the latter case there is no \(\pi_{j+1} X \) summand for \(m = 0 \).
13. COHERENCE OF THE EQUIVALENCES $ET/ET_{2n-1} \simeq ET_+ \wedge S^{C(1)^n}$

(Proof of Lemma 12.6)

In this section we prove Lemma 12.6. We first observe uniqueness. We note that

$$\text{Ho}^B(\mathcal{S})(\Sigma^\infty ET_+ \wedge S^{C(1)^n}, \Sigma^\infty ET_+ \wedge S^{C(1)^n})$$

$$\cong \text{Ho}(\mathcal{S})(\Sigma^\infty ET_+ \wedge S^{C(1)^n}, \Sigma^\infty ET_+ \wedge S^{C(1)^n})$$

$$\cong \text{Ho}(\mathcal{S})(\Sigma^\infty ET_+ \wedge S^{C(1)^n}, \Sigma^\infty ET_+ \wedge S^{C(1)^n})$$

which is isomorphic to \mathbb{Z} by [12, B^5]. Thus, for the moment assume there exists a Borel equivalence $\Sigma^\infty ET/ET_{2n-1} \simeq \Sigma^\infty ET_+ \wedge S^{C(1)^n}$ for all $n \geq 0$. Then there are exactly two choices for each n, which induce opposite sign isomorphisms on $H_{2n} \cong \mathbb{Z}$, and diagrams involving only spectra Borel equivalent to $\Sigma^\infty ET/ET_{2n-1}$ (for fixed n) commute exactly when they commute on H_{2n}. It follows that the diagram in (i) determines a unique choice in the case $n = 0$ and in the other cases a unique choice once the choice for $n = 1$ is specified. The diagram in (ii) determines a unique choice in the case $n = 1$.

The proof of existence is a construction, which we do on the space level. First, it is convenient to change models. Recall that $S(C(1)^n)$ denotes the unit sphere in $C(1)^n$, where $C(1)$ denotes the complex numbers \mathbb{C} with the standard action of T as the unit complex numbers. Let $S(C(1)^\infty)$ be the union of $S(C(1)^n)$, where we include $C(1)^n$ in $C(1)^{n+1}$ as the vectors with 0 in the last coordinate. Then $S(C(1)^\infty)$ is a model of ET and so we have a unique T-homotopy class of T-homotopy equivalence from $S(C(1)^\infty)$ to our standard model of ET. Looking at the induced map on T-quotients, the restriction

$$CP^n = S(C(1)^n)/T \longrightarrow ET/T \cong BT$$

factors through BT_{2n-2} (with our doubled filtration index convention) by obstruction theory, and so the map $S(C(1)^n) \rightarrow ET$ factors up to T-homotopy through ET_{2n-2} by bundle theory. This constructs a T-homotopy commutative diagram of T-spaces

$$S(C(1)) \rightarrow S(C(1)^2) \rightarrow S(C(1)^3) \rightarrow \cdots \rightarrow S(C(1)^\infty)$$

$$\cong \downarrow \quad \cong \downarrow \quad \cong \downarrow \quad \downarrow \cong$$

$$ET_0 \longrightarrow ET_2 \longrightarrow ET_4 \longrightarrow \cdots \longrightarrow ET.$$

Choosing homotopies, it suffices to construct and study the maps using the model $S(C(1)^\infty)/S(C(1)^n)$ in place of $ET/ET_{2n-1} = ET/ET_{2n-2}$.

Remark 13.1. A concrete construction of the maps $S(C(1)^n) \rightarrow ET_{2n-2}$ is as follows. For the model WT of Section 9, we can use the map that sends an element

$$(z_1, \ldots, z_n) \in S(C(1)^n) \subset C(1)^n$$

to the element represented by

$$\left(\frac{z_{i_0}}{||z_{i_0}||}, \ldots, \frac{z_{i_m}}{||z_{i_m}||}\right), (||z_{i_0}||^2, \ldots, ||z_{i_m}||^2) \in \mathbb{T}^{m+1} \times \Delta[m]$$

where z_{i_0}, \ldots, z_{i_m} drops the coordinates z_j that are 0, and the element of $\Delta[m]$ is specified in barycentric coordinates. The corresponding map to the model ET
Proof. Let \(\bar{C} \) be the bottom horizontal map is induced by the inclusion of commutes up to \(T \). Since the map is also \(T \)-equivariant and both sides are free \(T \)-cell complexes, the map is a \(T \)-homotopy equivalence.

Construction 13.2. We construct a \(T \)-homeomorphism

\[
h_{n,q}: S(\mathbb{C}(1)^{n+q})/S(\mathbb{C}(1)^n) \rightarrow S(\mathbb{C}(1)^q) \wedge S^{\mathbb{C}(1)^n}
\]

by first constructing a \(T \)-equivariant map

\[
\bar{h}_{n,q}: S(\mathbb{C}(1)^{n+q}) \rightarrow S(\mathbb{C}(1)^q) \wedge S^{\mathbb{C}(1)^n}
\]

that sends all of \(S(\mathbb{C}(1)^{n+q}) \) to the basepoint. For \(\bar{x} = (w_1, \ldots, w_n, z_1, \ldots, z_q) \in \mathbb{C}(1)^{n+q} \) with \(\|\bar{z}\| = 1 \), write \(\bar{w} = (w_1, \ldots, w_n) \in \mathbb{C}(1)^n \) and \(\bar{z} = (z_1, \ldots, z_q) \in \mathbb{C}(1)^q \). We have \(\bar{w} \in S(\mathbb{C}(1)^n) \subset S(\mathbb{C}(1)^{n+q}) \) exactly when \(\bar{z} = 0 \), in which case we define \(h_{n,q}(\bar{x}) \) to be the basepoint as required; otherwise we define

\[
\bar{h}_{n,q}(\bar{x}) = \frac{\bar{z}}{\|\bar{z}\|} \wedge \frac{\bar{w}}{\|\bar{z}\|} \in S(\mathbb{C}(1)^q) \wedge S^{\mathbb{C}(1)^n}.
\]

This is continuous since \(\bar{w}/\|\bar{z}\| \) goes to the basepoint as \(\bar{z} \) goes to 0. The factorization \(h_{n,q} \) is a \(T \)-equivariant continuous bijection of compact spaces and hence a \(T \)-homeomorphism.

The maps \(h_{n,q} \) are consistent for varying \(q \) to define a \(T \)-homeomorphism

\[
h_{n,\infty}: S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^n) \xrightarrow{\cong} S^{\mathbb{C}(1)^n} \wedge S(\mathbb{C}(1)^\infty).
\]

Collapsing \(S(\mathbb{C}(1)^\infty) \) to a point, we then get a composite map

\[
h_n: S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^n) \rightarrow S^{\mathbb{C}(1)^n}
\]

that is a Borel equivalence.

Proposition 13.3. The diagram

\[
\begin{array}{ccc}
S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^m) & \xrightarrow{h_m} & S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^{m+1}) \\
\downarrow & & \downarrow h_{m+1} \\
S^{\mathbb{C}(1)^m} & \xrightarrow{\bar{h}_{m+1}} & S^{\mathbb{C}(1)^{m+1}}
\end{array}
\]

commutes up to \(T \)-homotopy where the top horizontal map is the quotient map and the bottom horizontal map is induced by the inclusion of \(\mathbb{C}(1)^m \) into \(\mathbb{C}(1)^{m+1} \).

Proof. Let \(\bar{i}_m \) be the self-map of \(S(\mathbb{C}(1)^\infty) \) induced by the map \(\mathbb{C}(1)^\infty \rightarrow \mathbb{C}(1)^\infty \) that is the identity on \(\mathbb{C}(1)^m \) but sends the standard basis vector \(e_n \) to \(e_{n+1} \) for \(n > m \); let \(i_m \) be the induced self-map of \(S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^m) \). Then \(\bar{i}_m \) is a \(T \)-equivariantly homotopic to the identity through a homotopy that preserves
$S(\mathbb{C}(1)^m)$ pointwise, and therefore i_m is also T-equivariantly homotopic to the identity. Since the diagram

$$
\begin{array}{ccc}
S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^m) & \xrightarrow{i_m} & S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^m) \\
\downarrow h_m & & \downarrow h_m \\
S^\mathbb{C}(1)^m & \rightarrow & S^\mathbb{C}(1)^{m+1}
\end{array}
$$

commutes, the diagram in the statement commutes up to T-homotopy. □

If we choose $i, j \geq 0$, letting $n = i + j$, we define a T-equivariant map

$$
\delta_{i,j} : S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^n) \rightarrow S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^i) \wedge S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^j)
$$

as follows. Writing an element of $S(\mathbb{C}(1)^\infty)$ as

$$
\vec{x} = (v_1, \ldots, v_i, w_1, \ldots, w_j, z_1, z_2, \ldots),
$$

taking $\vec{v} = (v_1, \ldots, v_i, 0, 0, \ldots) \in \mathbb{C}(1)^\infty$, $\vec{w} = (w_1, \ldots, w_j, 0, 0, \ldots) \in \mathbb{C}(1)^\infty$, and

$$
\vec{z} = (0, \ldots, 0, z_1, z_2, \ldots) \in \mathbb{C}(1)^\infty,
$$

we define

$$
\delta_{i,j}(\vec{x}) = \frac{\vec{v} + \vec{z}}{||\vec{v} + \vec{z}||} \wedge \frac{\vec{w} + \vec{z}}{||\vec{w} + \vec{z}||} \in S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^i) \wedge S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^j)
$$

where we understand the point as the basepoint when $\vec{z} = 0$. We use this map in the following proposition.

Proposition 13.4. For any $i, j \geq 0$ and $n = i + j$, The diagram

$$
\begin{array}{ccc}
S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^n) & \xrightarrow{\delta_{i,j}} & S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^i) \wedge S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^j) \\
\downarrow h_n & & \downarrow h_i \wedge h_j \\
S^\mathbb{C}(1)^n & \rightarrow & S^\mathbb{C}(1)^i \wedge S^\mathbb{C}(1)^j
\end{array}
$$

commutes up to T-homotopy where the bottom horizontal map is the canonical isomorphism

$$
S^\mathbb{C}(1)^n = S^\mathbb{C}(1)^{i+j} \cong S^\mathbb{C}(1)^i \wedge S^\mathbb{C}(1)^j \cong S^\mathbb{C}(1)^i \wedge S^\mathbb{C}(1)^j.
$$

Proof. In the $\vec{x}, \vec{v}, \vec{w}, \vec{z}$ notation above the down-then-right map sends \vec{x} to

$$
\frac{\vec{v}}{||\vec{v}||} \wedge \frac{\vec{w}}{||\vec{w}||},
$$

while the right-then-down map sends \vec{x} to

$$
\frac{\vec{v}}{||\vec{v} + \vec{z}||} \wedge \frac{\vec{w}}{||\vec{w} + \vec{z}||}.
$$

The homotopy

$$
\frac{\vec{v}}{||\vec{v} + \vec{z}||} \rightarrow \frac{\vec{w}}{||\vec{w} + \vec{z}||}.
$$

is T-equivariant. □

We are now ready to prove Lemma 12.6.
Proof. As discussed above, uniqueness follows immediately from existence. We use the map in the Borel stable category given by the zigzag
\[\mathcal{E}/E\mathcal{T}_{2n-1} \xrightarrow{\cong} S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^n) \xrightarrow{h_{n,\infty}} S(\mathbb{C}(1)^\infty)_+ \wedge S^{\mathbb{C}(1)^n} \xrightarrow{\cong} E\mathcal{T}_+ \wedge S^{\mathbb{C}(1)^n}. \]

Proposition 13.4 shows that the diagram in (ii) commutes for all \(m \). To deduce that the diagram in (i) commutes, it suffices to show that the diagram

\[\begin{array}{ccc}
S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^n) & \xrightarrow{\delta_{i,j}} & S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^i) \wedge S(\mathbb{C}(1)^\infty)/S(\mathbb{C}(1)^j) \\
E\mathcal{T}/E\mathcal{T}_{2n-1} & \xrightarrow{\sim} & E\mathcal{T}/E\mathcal{T}_{2i-1} \wedge E\mathcal{T}/E\mathcal{T}_{2j-1}
\end{array} \]

commutes after applying \(H_{2n} \). This is a straightforward homology calculation, keeping track of signs. \(\square \)

14. The strong Küneth theorem for \(\text{THH} \)

The following well-known result does not appear to have a good reference in the literature.

Theorem 14.1. Let \(R \) be a commutative ring orthogonal spectrum. Let \(X \) and \(Y \) be \(R \)-algebras. The symmetric monoidal structure map
\[\text{THH}(X) \wedge_{\text{THH}(R)} \text{THH}(Y) \rightarrow \text{THH}(X \wedge_{R} Y) \]
is an isomorphism in the Borel derived category of \(\text{THH}(R) \)-modules.

We can assume without loss of generality that \(R \) is cofibrant as a commutative ring orthogonal spectrum and \(X \) and \(Y \) are cofibrant as \(R \)-algebras. Then the cyclic bar constructions \(N^{\text{cy}}(X) \), \(N^{\text{cy}}(Y) \), and \(N^{\text{cy}}(R) \) model \(\text{THH}(X) \), \(\text{THH}(Y) \), and \(\text{THH}(R) \), respectively. The map in question is induced by the map
\[N^{\text{cy}}(X) \wedge N^{\text{cy}}(R) \wedge N^{\text{cy}}(Y) \rightarrow N^{\text{cy}}(X \wedge_{R} Y) \]
which coequalizes the maps
\[N^{\text{cy}}(X) \wedge N^{\text{cy}}(Y) \rightarrow N^{\text{cy}}(X \wedge Y) \rightarrow N^{\text{cy}}(X \wedge_{R} Y) \]
where the top arrow is the \(N^{\text{cy}}(R) \)-action on \(N^{\text{cy}}(X) \) and the bottom arrow is the \(N^{\text{cy}}(R) \)-action on \(N^{\text{cy}}(Y) \). It suffices to prove the following stronger point-set theorem.

Theorem 14.2. Let \(R \) be a commutative ring orthogonal spectrum. Let \(X \) and \(Y \) be \(R \)-algebras. The symmetric monoidal structure map
\[N^{\text{cy}}(X) \wedge_{N^{\text{cy}}(R)} N^{\text{cy}}(Y) \rightarrow N^{\text{cy}}(X \wedge_{R} Y) \]
is an isomorphism in the point-set category of equivariant \(N^{\text{cy}}(R) \)-modules.

Proof. Since coequalizers commute with geometric realization, looking at simplicial level \(n \), it suffices to show that the map
\[(X \wedge \cdots \wedge X) \wedge_{R^\wedge} (Y \wedge \cdots \wedge Y) \rightarrow (X \wedge_{R} Y) \wedge \cdots \wedge (X \wedge_{R} Y) \]
is an isomorphism and this is clear by inspection. \(\square \)

Remark 14.3. Since the map in Theorem 14.1 is natural in the category \(\text{Ho}^M(\mathbb{G}\text{at}^R) \) obtained from the category of \(R \)-spectral categories by formally inverting the Morita equivalences, the result generalizes to the case when \(X \) and \(Y \) are \(R \)-spectral categories.
Remark 14.4. We have consistently worked in the Borel derived category throughout rather than the equivariant derived category. It is clear from Theorem 14.2 that the strong K"unneth theorem holds for THH in any category where THH is modeled by a functor of N^cy on cofibrant objects of the given types. In particular, it applies to the norm model of THH constructed as $N^\text{cy}_c = IU_k N^\text{cy}$ as in [1].

15. THH of smooth and proper algebras (Proof of Theorem C)

The purpose of this section is to prove Theorem C of the introduction. To"en-Vaquié [33, 2.6] show that any smooth and proper k-linear dg category \mathcal{X} is Morita equivalent to a smooth and proper dg k-algebra, and so by Morita invariance of THH [6, 5.12], it suffices to prove the following theorem.

Theorem 15.1. Let R be a commutative ring orthogonal spectrum and A a R-algebra which is smooth and proper when viewed as an R-spectral category. Then $\text{THH}(A)$ is a small $\text{THH}(R)$-module.

We emphasize that the statement here and the work in this section is non-equivariant.

We recall that an R-module M is small means that maps in the derived category out of it $\mathcal{D}_R(M, -)$ commutes with arbitrary coproducts; this is equivalent to M being weakly equivalent to the homotopy retract of a finite cell R-module. For the hypothesis of the theorem, A is a proper as an R-spectral category precisely when A is small as an R-module and A is a smooth as an R-spectral category precisely when A is small as an $A \wedge_R A^{op}$-module (q.v. [2, §3.2]), or more precisely, when for some (hence any) cofibrant replacement $A' \to A$ in R-algebras, A is small as an $A' \wedge_R A'^{op}$-module.

Without loss of generality, we model R as a cofibrant commutative ring orthogonal spectrum and we model A with a cofibrant R-algebra. These hypotheses will be enough to ensure that all smash products we use below in the proof of Theorem 15.1 represent derived smash products.

The proof of Theorem 15.1 involves a comparison of different models representing $\text{THH}(A)$ as a $\text{THH}(R)$-module, some of which involve elaborate simplicial constructions that play off the smash product of orthogonal spectra against the smash products \wedge_R for R-modules. To avoid confusion, we will always write \wedge_S in this section for the smash product of orthogonal spectra to contrast with \wedge_R. Likewise, we will refer to orthogonal spectra with no extra structure as S-modules to contrast with the extra structure of R-modules or A-modules.

The basic building blocks of the constructions of this section are the two-sided and cyclic bar constructions relative to S and R. We begin by establishing conventions and notation for these constructions in this section. In this section only, we use N^S_* and $N^{\text{cy}\times S}_*$ to denote the two-sided bar and cyclic bar constructions using \wedge_S, and B^S and $B^{\text{cy}\times S}$ for the geometric realizations. We also use corresponding notation replacing S with R. To be specific about the face maps: In

$$N^S_q(X, A, Y) = X \wedge_S A \wedge_S \cdots \wedge_S A \wedge_S Y,$$

d_0 uses the left action of A on Y and d_q uses the right action of A on X. We call X the leftside module and Y the rightside module; the leftside module is a right module and the rightside module is a left module. If the leftside module is an A-bimodule, then the left action of A on X induces a left action of A on $N^S(X, A, Y)$;
if Y is also an A-bimodule, then $N^S(X,A,Y)$ inherits an A-bimodule structure. We have similar observations using R in place of A or in place of S.

Recall that an A-bimodule (in the category of S-modules) consists of an S-module M together with commuting left and right A-module action maps $A \otimes_S M \to M$ and $M \otimes_S A \to M$; this is equivalent data to the structure of either a left or right $A \otimes_S A^{op}$-module on M. Likewise, an A-bimodule (in the category of R-modules) consists of an R-module M and commuting left and right A-module action maps $A \otimes_R M \to M$ and $M \otimes_R A \to M$, with equivalent data a (left or right) $A \otimes_R A^{op}$-module structure on M.

Given an A-bimodule M (in the category of S-modules), when forming the cyclic bar construction
\[
N^c_{\otimes}(A; M) = M \otimes_S A \otimes_S \cdots \otimes_S A
\]
our convention is to have d_0 use the left action of A on M and d_q the right action of A on M. We then have a canonical isomorphism
\[
N^c_{\otimes}(A; M) \cong M \otimes_{A \otimes A^{op}} N^c_{\otimes}(A,A,A)
\]
where we use the (previously unused) left A-module structure on the leftside A and right A-module structure on the rightside A. Writing things this way, it is natural to regard M as a right $A \otimes_S A^{op}$-module and $N^c_{\otimes}(A,A,A)$ as a simplicial left $A \otimes A^{op}$-module.

In the context of commutative ring orthogonal spectra, the two-sided bar construction $B^S(R,R,R)$ and cyclic bar construction $B^c_{\otimes S}(R)$ are special cases of tensors. In the following, we write \otimes for the tensor of a commutative ring orthogonal spectrum with an unbased space (in the category of commutative ring orthogonal spectra). Then $B^S(R,R,R)$ is canonically isomorphic to the tensor $R \otimes \Delta[1]$ and $B^c_{\otimes S}(R)$ is canonically isomorphic to the tensor $R \otimes (\Delta[1]/\partial \Delta[1])$.

We are now ready to begin the constructions of the various models of $THH(A)$. We use the following shorthand notation for some of the constructions described above:

Notation 15.2. Let RI denote $R \otimes \Delta[1]$. Let $R_0 = R \otimes \{0\}$ and $R_1 = R \otimes \{1\}$; then R_0 and R_1 are canonically isomorphic to R as commutative ring orthogonal spectra, but the subscripts keep track of the maps of commutative ring orthogonal spectra $R \to RI$. (In fact, we have analogous maps R_t for $t \in (0,1)$, although we do not use these.)

Notation 15.3. Let $ARI = A \otimes R_0 RI$, the extension of scalars RI-algebra. We regard ARI as an R algebra via $R_1 \to RI$.

Recalling that d_0 on the tautological element of $\Delta[1]_1$ corresponds to the vertex 1 and d_1 to the vertex 0, we see that ARI is the geometric realization of the simplicial associative ring orthogonal spectrum
\[
ARI_* = N^S_{\otimes}(A,R,R),
\]
and its R-algebra structure comes from the leftside R.

The inclusion of A in ARI_* is map of simplicial associative ring orthogonal spectra with A constant but not a map of simplicial R-algebras. The collapse map $ARI_* \to A$ is a map of R-algebras and a simplicial homotopy equivalence of simplicial associative ring orthogonal spectra.
Notation 15.4. Let O_* be the simplicial model of the circle obtained by gluing 2 copies of $\Delta[1]_*$ along 0 and along 1. To be definite later, we label one copy (a) and the other (b). Let RO_* be the simplicial commutative ring orthogonal spectrum $R \otimes O_*$ (a \mathbb{A}_R-power of R in each simplicial degree). We write RO for the geometric realization, which is canonically isomorphic to the commutative ring orthogonal spectrum $R\Lambda_{RO}R_1 = RI$. We have canonical maps of commutative ring orthogonal spectra $RO_0, R_1 \to RO$.

Notation 15.5. We let ARO be the extension of scalars RO-algebra $RO \otimes_R A$. When we regard this as an R-algebra it will be via $R_1 \to RO$.

We can also describe ARO as the geometric realization of a simplicial associative ring orthogonal spectrum (or simplicial R-algebra). We have 2 maps of R-algebras $ARI \to ARO$ corresponding to the 2 maps of $RI \to RO$ (corresponding to the 2 maps of $\Delta[1]_*$ into O_*). We use the “(a)” map to define a left ARI-module structure on ARO and the “(b)” map to define a right ARI-module structure on ARO; together these give a ARI-bimodule structure in R-modules, a $ARI \otimes_R ARI^{op}$-module structure. This bimodule structure commutes with the RO-module structure.

Notation 15.6. Let $R\partial\Delta[2] = R \otimes \partial\Delta[2]$ and $R\partial\Delta[2]_* = R \otimes \partial\Delta[2]_*$. We have a map of simplicial sets $\partial\Delta[2]_* \to O_*$ sending the 1-simplex $\{0\}$ to the point 0 (i.e., collapsing $d^2 \Delta[1]_*$), sending $\{0, 2\}$ to (a) and $\{1, 2\}$ to (b). This induces a weak equivalence of commutative ring orthogonal spectra $R\partial\Delta[2] \to RO$. Indeed, this map is homotopic in the category of commutative ring orthogonal spectra to an isomorphism, just as the geometric realization of $\partial\Delta[2]_* \to O_*$ is homotopic in the category of spaces to a homeomorphism. For consistency with this map, when we refer to $R\partial\Delta[2]$ as an R-module it will be via $R \otimes \{2\}$. (The vertex 2 goes to the vertex 1 in the simplicial map $\partial\Delta[2]_* \to O_*$.)

The inclusion $d^2: \Delta[1]_* \to \partial\Delta[2]_*$ induces a map of commutative ring orthogonal spectra $RI \to R\partial\Delta[2]$.

The maps $d^0, d^1: \Delta[1]_* \to \partial\Delta[2]_*$ induce a pair of maps $RI \to R\partial\Delta[2]$, giving D a pair of commuting RI-module structures – indeed an $RI \otimes_R RI$-module structure; using the left and right action of A on $B^S(A, A, A)$, these extend to a ARI-bimodule structure on D (with the left action of ARI corresponding to the 1-simplex $\{0, 2\}$ of $\Delta[2]_*$, and the right action of ARI corresponding to the 1-simplex $\{1, 2\}$). In fact, the ARI-bimodule structure is a $ARI \otimes_R ARI^{op}$-module structure that commutes with the $R\partial\Delta[2]$-module structure.

The A-bimodule (in S-modules) weak equivalence $B^S(A, A, A) \to A$ induces a weak equivalence $D \to ARO$, which is a map of ARI-bimodules in R-modules and of $R\partial\Delta[2]$-modules (using the map $R\partial\Delta[2] \to RO$ for the $R\partial\Delta[2]$-module structure on ARO). Applying $B^{Rym}(ARI; -)$, we get a weak equivalence of $R\partial\Delta[2]$-modules

$$B^{Rym}(ARI; D) \to B^{Rym}(ARI; ARO).$$

We will see below that these are models of $THH(A)$; the weak equivalence (15.8) is the first key ingredient to the proof of Theorem 15.1 below.

The last model arises by applying the Dennis-Waldhausen Morita trick [6, §6] to $B^{Rym}(ARI; D)$. To do so, we need to identify $B^{Rym}(ARI; D)$ as the geometric
We can construct the realization of the simplicial S-module
\[(*) \quad \mathcal{N}^{cy,R}(ARI; N^{cy,\overline{S}}_0(A; ARI \wedge_R ARI^{op})).\]

In (*), we use the above map of associative ring orthogonal spectra $A \to ARI$ to get a map of associative ring orthogonal spectra
\[A \wedge_S A^{op} \to ARI \wedge_S ARI^{op} \to ARI \wedge_R ARI^{op},\]
and this gives commuting right $A \wedge_S A^{op}$-module and left $ARI \wedge_R ARI^{op}$-module structures on $ARI \wedge_R ARI^{op}$; the canonical isomorphism (symmetry isomorphism on smash factors)
\[(ARI \wedge_R ARI^{op})^{op} \cong ARI \wedge_R ARI^{op}\]
makes this commuting right $A \wedge_S A^{op}$ and $ARI \wedge_R ARI^{op}$-module structures, allowing us to do construction (*). To show that $B^{cy,R}(ARI; D)$ is the geometric realization of the multisimplicial S-module (*), we just need to produce an isomorphism of left $ARI \wedge_R ARI^{op}$-modules between D and $B^{cy,\overline{S}}(A; ARI \wedge_R ARI)$. By construction D is isomorphic to the geometric realization of
\[R \otimes \partial \Delta[2] \wedge_{d2} N^{\overline{S}}_0(A, A, A).\]

We can construct $\partial \Delta[2]$, as the diagonal of a bisimplicial set obtained by gluing Δ^2 (the faces d^0 and d^1) in a first simplicial direction along vertices 0 and 1 to the face d^2 in a second simplicial direction. Taking the geometric realization of the first simplicial direction, we see that D is isomorphic to the geometric realization of
\[R \otimes \Delta^2 \wedge_{R_0 \wedge_{S} R_1} N^{\overline{S}}_0(A, A, A) \cong (R \otimes \Delta^2 \wedge_{R_0 \wedge_{S} R_1} (A \wedge_S A^{op})) \wedge_{A \wedge_{S} A^{op}} N^{\overline{S}}_0(A, A, A)\]
(to be clear, using the R-action corresponding to the vertex 0 of $\Delta[2]$, to attach A and corresponding to the vertex 1 to attach A^{op}). Breaking Δ^2 as $\Delta[1] \cup_{(1)} \Delta[1]$, this is easily recognized as
\[(ARI \wedge_R ARI^{op}) \wedge_{A \wedge_{S} A^{op}} N^{\overline{S}}_0(A, A, A) \cong N^{cy,\overline{S}}(A; ARI \wedge_R ARI^{op}).\]
The isomorphism constructed preserves the ARI-bimodule (in R-module) structure, using the standard left action of ARI on ARI and right action on ARI^{op}.

The previous paragraph constructs an isomorphism from $B^{cy,R}(ARI; D)$ to the geometric realization of the simplicial S-module
\[N^{R}_0(ARI, ARI, ARI) \wedge_{ARI \wedge_R ARI^{op}} (ARI \wedge_R ARI^{op}) \wedge_{A \wedge_{S} A^{op}} N^{\overline{S}}_0(A, A, A),\]
Using the symmetry isomorphism of \wedge_S to switch the sides we put $N^{\overline{S}}_0(A, A, A)$ and $N^{R}(ARI, ARI, ARI)$ on, we get an isomorphism with
\[N^{cy,\overline{S}}_0(A; N^{R}_0(ARI, ARI, ARI))\]
and so an isomorphism of S-modules
\[(15.9) \quad B^{cy,R}(ARI; D) \cong B^{cy,\overline{S}}(A; B^R(ARI, ARI, ARI)).\]
(This is the Dennis-Waldhausen Morita trick.) We transport the $R\partial \Delta[2]$-module structure on $B^{cy,R}(ARI; D)$ constructed above to $B^{cy,\overline{S}}(A; B^R(ARI, ARI, ARI))$ along this isomorphism. We emphasize that this constructs a well-defined $R\partial \Delta[2]$-module structure on $B^{cy,\overline{S}}(A; B^R(ARI, ARI, ARI))$, but we can describe it more concretely as follows. We write $B^{cy,\overline{S}}(A; B^R(ARI, ARI, ARI))$ as the geometric realization of the multisimplicial S-module
\[N^{cy,\overline{S}}_0(A; N^{R}_n(ARI_j, ARI_m, ARI_k)).\]
For fixed \(m, n \), grouping together the \(i,j,k \)-terms, we are looking at

\[
(**) \quad A^{\wedge_d(i)} \wedge_R (ARI \wedge_R ARI_k \wedge_R ARI_{m}^{\wedge_d(n)})
\]

\[
= A^{\wedge_d(i)} \wedge_R \left((A \wedge_R R^{\wedge_d(j)} \wedge_R R) \wedge_R (A \wedge_R R^{\wedge_d(k)} \wedge_R R) \wedge_R ARI_{m}^{\wedge_d(n)} \right)
\]

where the \(R \)-module structure on \(ARI_{\ast} \) for \(\wedge_R \) is the last factor of \(R \) in the expansion. Viewing \(\partial \Delta[2, \ast] \) as the diagonal of a trisimplicial set, \(R\partial \Delta[2] \) is the geometric realization of the trisimplicial set

\[
R_0 \wedge_R R^{\wedge_d(i)} \wedge_R R_1 \wedge_R R^{\wedge_d(j)} \wedge_R R_2 \wedge_R R^{\wedge_d(k)},
\]

where \(R_0, R_1, \) and \(R_2 \) are all copies of \(R \) that we have marked by numbers to keep track of them in the formulas that follow. (The numbers correspond to the vertices of \(\partial \Delta[2] \).) We can rewrite the above in terms of \(\wedge_{R_2} \) as

\[
R_0 \wedge_R R^{\wedge_d(i)} \wedge_R \left((R_1 \wedge_R R^{\wedge_d(j)} \wedge_R R_2) \wedge_R (R^{\wedge_d(k)} \wedge_R R_2) \right),
\]

and we can move \(R_0 \) inside the last factor

\[
R^{\wedge_d(i)} \wedge_R \left((R_1 \wedge_R R^{\wedge_d(j)} \wedge_R R_2) \wedge_R (R_0 \wedge_R R^{\wedge_d(k)} \wedge_R R_2) \right).
\]

In terms of the formula (**), we have \(R^{\wedge_d(i)} \) acting on \(A^{\wedge_d(i)} \), we have \(R^{\wedge_d(j)} \) and \(R^{\wedge_d(k)} \) acting on the respective factors in (**), we have \(R_2 \) acting on the righthand \(R \)-factors (used in \(\wedge_R \)), and finally \(R_0 \) acts on the \(A \) in the \(k \)-factor while \(R_1 \) acts on the \(A \) in the \(j \)-factor.

The collapse maps

\[
B^R(ARI, ARI, ARI) \longrightarrow ARI \longrightarrow A
\]

induce a weak equivalence of \(S \)-modules

\[
(15.10) \quad B^{\wedge_S}(ARI; D) \longrightarrow B^{\wedge_S}(A; B^R(ARI, ARI, ARI)) \longrightarrow B^{\wedge_S}(A).
\]

This is a map of \(R\partial \Delta[2] \)-modules when we give \(B^{\wedge_S}(A) \) the module structure induced by the map

\[
\beta: \partial \Delta[2, \ast] \longrightarrow \partial \Delta[2, \ast]/\Delta_2^1 \cong \Delta[1, \ast]/\partial \Delta[1]
\]

and the usual \(B^{\wedge_S}(R) \cong R \otimes \Delta[1]/\partial \Delta[1] \) module structure on \(B^{\wedge}(A) \).

In the end, we have constructed in (15.8), (15.9), and (15.10) a zigzag of weak equivalences of \(R\partial \Delta[2] \)-modules relating \(B^{\wedge_S}(ARI; ARO) \) and \(B^{\wedge}(A) \). We are now ready to prove Theorem 15.1.

Proof of Theorem 15.1. The hypothesis that \(A \) is proper over \(R \) means that \(A \) is weakly equivalent to a homotopy retract of a finite cell \(R \)-module. Since the derived functor \(RO \wedge_{R_0} (\ast) \) from \(R \)-modules to \(RO \)-modules preserves cofiber sequences, we see that \(ARO \) is weakly equivalent to a homotopy retract of a finite cell \(RO \)-module. Since the map \(R \otimes \alpha: R\Delta[2] \longrightarrow RO \) is a weak equivalence, we see that \(ARO \) is weakly equivalent to a homotopy retract of a finite cell \(R\partial \Delta[2] \)-module. The hypothesis that \(A \) is smooth over \(R \) is that \(A \) is weakly equivalent to a homotopy retract of a finite cell \(A \wedge_R A \)-module. Using the weak equivalence of \(R \)-algebras \(ARI \rightarrow A \), we see that \(ARI \) and \(B^R(ARI, ARI, ARI) \) are weakly equivalent to homotopy retracts of finite cell right \(ARI \wedge_R ARI \)-modules. Since

\[
B^{\wedge_S}(ARI; ARO) \cong B^R(ARI, ARI, ARI) \wedge_{ARI \wedge_R ARI \otimes R} ARO,
\]
we see that $B_{\gamma R}(ARI; ARO)$ is weakly equivalent to the homotopy retract of a finite cell $R \partial \Delta[2]$-module.

Since the map $R \otimes \beta : R \otimes \partial \Delta[2] \to B_{\gamma S}(R)$ is a weak equivalence, the forgetful functor from $B_{\gamma S}(R)$-modules to $R \otimes \partial \Delta[2]$-modules is the right adjoint of a Quillen equivalence. We conclude that $B_{\gamma S}(A)$ is weakly equivalent to a homotopy retract of a finite cell $B_{\gamma S}(R)$-module.

Remark 15.11. The zigzag of weak equivalences between $B_{\gamma R}(ARI; ARO)$ and $B_{\gamma A}(A)$ can be interpreted as an isomorphism in the stable category

$$THH(A) \simeq THH^R(A; THH(R; A)).$$

We note that although $THH(R; A)$ is weakly equivalent as an A-module or A^{op}-module to $THH(R) \wedge_k A$, it is generally not for the $A \wedge_k A^{op}$ structure in the weak equivalence: if it were, we would then have a weak equivalence $THH(A) \simeq THH^R(A) \wedge_k THH(R)$. This does not hold in the example of $R = H\mathbb{Z}$ and $A = H\mathbb{Z}[i]$ as shown by the calculation in [22].

16. The finiteness theorem for TP (Proof of Theorem B)

The purpose of this section is to prove Theorem B and its analogue for $G = C_p$.

For convenience of reference, we state the combined theorem here.

Theorem 16.1. Let k be a perfect field of characteristic $p > 0$ and let $G = T$ or $G = C_p$. If X is a smooth and proper k-linear dg category, then $T_G(THH(X))$ is a finite $T_G(THH(k))$-module.

We have left off the second statement, because we use it to deduce the first: the main work of the section is to prove the following theorem.

Theorem 16.2. Let k be a perfect field of characteristic $p > 0$, and let G be a closed subgroup of T. If B is an Hk-algebra with $THH_*(B)$ finitely generated over $THH_*(k)$, then $\pi_*^G THH(B)$ is finitely generated over $\pi_*^G THH(k)$.

To deduce Theorem 16.1 from Theorem 16.2, we note that by Morita invariance of THH [6, 5.12], it suffices to consider dg k-algebras that are smooth and proper as k-linear dg categories in Theorem 16.1. Theorem C then implies that the Hk-algebras corresponding to smooth and proper dg k-algebras satisfy the hypotheses of Theorem 16.2. From here Theorem 16.1 is a consequence of the following observation.

Proposition 16.3. Let $G = T$ or $G = C_p$ and let X be a $T_G(THH(k))$-module. Then X is a finite $T_G(THH(k))$-module if and only if $\pi_* X$ is finitely generated over $\pi_*(T_G(THH(k)))$.

Proof. In the case $G = T$, $\pi_*(T_T(THH(k))) \cong \mathbb{W}k[v, v^{-1}]$ where $\mathbb{W}k$ denotes the p-typical Witt vectors on k and v is an element of $TP_{-2}(k) = \pi_{-2}(T_T(THH(k)))$, a particular choice of which Hesselholt constructed in [14, 4.2]. As a graded ring $\pi_*(T_T(THH(k)))$ is a graded PID, specifically, all graded ideals are of the form (p^n) for some n. As a consequence every $T_T(THH(k))$-module is a wedge of copies of suspensions $T_T(THH(k))$ and suspensions of the cofiber of multiplication by p^n: a module is finite over $T_T(THH(k))$ if and only if its homotopy groups are finitely generated over $\pi_*(T_T(THH(k)))$. In the case $G = C_p$, ...
\[\pi_* (\text{TC}_p (\text{THH}(k))) \cong k[v, v^{-1}], \] a graded field in the sense that every graded module over it is free. Every \(\text{TC}_p (\text{THH}(k)) \)-module is a wedge of suspensions of \(\text{TC}_p (\text{THH}(k)) \) and again a \(\text{TC}_p \text{THH}(k) \)-module is finite if and only if its homotopy groups are finitely generated over \(\pi_* \text{TC}_p \text{THH}(k) \).

For other closed subgroups \(C_r \subset \mathbb{T} \), writing \(r = p^m n \) with \((p, m) = 1 \), we have a weak equivalence \(\text{TC}_r \text{THH}(A) \cong \text{TC}_p \text{THH}(A) \) induced by the transfer. For \(n > 1 \), \(\pi^{\text{TC}_p} \text{THH}(k) \cong \mathbb{W}k^{*}[v, v^{-1}] \), where \(\mathbb{W}k_n \) denotes the Witt vectors of length \(n \). This graded ring has infinite global (projective) dimension and there exist \(\text{TC}_p \text{THH}(k) \)-modules whose homotopy groups are finite dimensional but which are not themselves small. For example, \(\text{TC}_p \text{THH}(k) \) is a \(\text{TC}_p \text{THH}(k) \)-module that is not small for \(n > 1 \) but has homotopy groups \((\pi_* \text{TC}_p \text{THH}(k))/p \).

For the proof of Theorem 16.2, we prove the following slightly more general theorem.

Theorem 16.4. Let \(G \) be a closed subgroup of \(\mathbb{T} \) and let \(X \) be a \(G \)-equivariant \(N^\infty (Hk) \)-module with \(\pi_* X \) finitely generated over \(\text{THH}_*(k) \), for \(k \) a perfect field of characteristic \(p > 0 \). Then \(\pi^G X \) is finitely generated over \(\pi^G \text{THH}(k) \).

Proof. We can assume without loss of generality that \(G = \mathbb{T} \) or \(G = C_{p^r} \) for some \(r > 0 \). In the case when \(G = \mathbb{T} \), we let \(r = \infty \) and we understand \(p^\infty = 0 \) and \(\mathbb{W}k_{\infty} = \mathbb{W}k \).

First we note that the conditionally convergent Greenlees Tate spectral sequence is strongly convergent: The hypothesis that \(\pi_* (X) \) is finitely generated over \(\text{THH}_*(k) \) implies that \(E^2_{i,j} = 0 \) for \(j \) small enough (below the minimum degree of a generator) and each \(E^2_{i,j} \) is a finite dimensional vector space over \(k \).

The Greenlees Tate spectral sequence for \(X \) is a module over the Greenlees Tate spectral sequence for \(\text{THH}(k) \). In the latter, the \(E^2 \)-term is isomorphic as a graded ring to \(k[t, \bar{v}, \bar{v}^{-1}, t] \) in the case \(G = \mathbb{T} \) and \(k[t, \bar{v}, \bar{v}^{-1}, t, b]/b^2t \) in the case when \(G \) is finite, where \(\bar{v} \) is in bidegree \((-2, 0)\) (the image of \(v \) in \(\pi^G_2 \text{THH}(k) \) in the spectral sequence), \(t \) is in bidegree \((0, 2)\) (the image of a generator of \(\pi_2 \text{THH}(k) \)), and \(b \) is in bidegree \((1, 0)\). The elements \(\bar{v} \) and \(t \) are infinite cycles while \(d^r t = \bar{v}^r t^r \), q.v. [14, 6.2]. When \(r = 1 \), \(t \) becomes zero on \(E^4 \), but otherwise, we can choose \(t \) so that it represents \(pv^{-1} \) in the spectral sequence.

The \(E^2 \)-term for \(X \) is naturally isomorphic as a graded \(k[t, \bar{v}, \bar{v}^{-1}, t] \)-module to \(\text{THH}_*(k) \otimes_{\text{THH}_*(k)} k[t, \bar{v}, \bar{v}^{-1}, t] \) in the case when \(G = \mathbb{T} \) and \(\text{THH}_*(k) \otimes_{\text{THH}_*(k)} k[t, \bar{v}, \bar{v}^{-1}, t, b]/b^2t \) in the case when \(G \) is finite. In either case, the hypothesis that \(\text{THH}_*(X) \) is finitely generated over \(\text{THH}_*(k) \) implies that the \(E^2 \)-term for \(X \) is finitely generated over \(k[t, \bar{v}, \bar{v}^{-1}, t] \). Since \(k[t, \bar{v}, \bar{v}^{-1}, t] \) is Noetherian, the \(E^\infty \)-term is also finitely generated over \(k[t, \bar{v}, \bar{v}^{-1}, t] \). The theorem now follows from a standard spectral sequence comparison argument; we give the full proof in the current context.

Choose elements \(\bar{x}_1, \ldots, \bar{x}_n \) in \(E^\infty_{i,j} \) that generate \(E^\infty \) as a \(k[t, \bar{v}, \bar{v}^{-1}, t] \)-module. Choose representatives \(x_1, \ldots, x_n \) of \(\bar{x}_1, \ldots, \bar{x}_n \); we need to show that \(x_1, \ldots, x_n \) generate \(\pi^G X \) over \(\mathbb{W}k[v, v^{-1}] \). Let \(y \neq 0 \) be any element of \(\pi^G X \) and let \(\bar{y} \) denote the element in \(E^\infty_{i,j} \) representing \(y \), where \(y \) is in filtration level \(i \) (but not \(i - 1 \)) and total degree \(i + j \). Define \(i_1, j_1 \in \mathbb{Z} \) by \(i_1 = E^\infty_{i,j} \). It will also be convenient to write \(d = i + j \) for the total degree of \(y \) and \(d_x = i + j_x \) for the total degree of \(x_x \). Since \(y \) is arbitrary, it suffices to show that \(y \) is in the submodule of \(\pi^G X \) generated by \(x_1, \ldots, x_n \) over \(\pi^G \text{THH}(k) \).
Since $E_{*,*}^\infty$ is generated by $\bar{x}_1, \ldots, \bar{x}_n$ over $k[\bar{v}, \bar{v}^{-1}, \bar{t}]$, we can write
\[
y = a_0^n \bar{v}^{\frac{1}{2}(i_1-i)} \bar{t}^{\frac{1}{2}(j_1-j)} \bar{x}_1 + \cdots + a_n^n \bar{v}^{\frac{1}{2}(i_n-i)} \bar{t}^{\frac{1}{2}(j_n-j)} \bar{x}_n
\]
for some $a_0, \ldots, a_n \in k$, where we must have $a_0^\ell = 0$ if $\ell - i$ is odd, $j - j_\ell$ is odd, or $j - j_{\ell+1} < 0$. Let $a_0^\ell = \omega(\bar{a}_0^\ell) \in \mathbb{W}k$ using the Teichmüller character and let
\[
y_0 = a_0^n \bar{v}^{\frac{1}{2}(i_1-i)} (pv^{-1})^{\frac{1}{2}(j_1-j)} \bar{x}_1 + \cdots + a_n^n \bar{v}^{\frac{1}{2}(i_n-i)} (pv^{-1})^{\frac{1}{2}(j_n-j)} \bar{x}_n
\]
\[
= a_0^n v^{\frac{1}{2}}(j-j_1) v^{\frac{1}{2}}(d_1-d) x_1 + \cdots + a_n^n v^{\frac{1}{2}}(j-j_n) v^{\frac{1}{2}}(d_n-d) x_n.
\]
We again have $a_0^\ell = 0$ when $d_\ell - d$ is odd, $j - j_\ell$ is odd, or $j - j_{\ell+1} < 0$, so this formula makes sense. Let $z_1 = y - y_0$. Since y_0 also represents \bar{y} in $E_{i,j}^\infty$, we must have that z_1 is in filtration degree $i - 1$ or lower, so represents an element \bar{z}_1 in E_{i-1,s_1,s_1}^∞ for some $s_1 > 0$. Writing \bar{z}_1 in terms of the generators $\bar{x}_1, \ldots, \bar{x}_n$, we have
\[
\bar{z}_1 = a_0^n \bar{v}^{\frac{1}{2}(i_1-i+s_1)} \bar{t}^{\frac{1}{2}(j_1+s_1)} \bar{x}_1 + \cdots + a_n^n \bar{v}^{\frac{1}{2}(i_n-i+s_1)} \bar{t}^{\frac{1}{2}(j_n+s_1)} \bar{x}_n
\]
for some $a_0^1, \ldots, a_n^1 \in k$. Let $a_0^1 = \omega(\bar{a}_0^1)$ and let
\[
y_1 = y_0 + a_1^1 p^{\frac{1}{2}(j-j_1+s_1)} v^{\frac{1}{2}}(d_1-d) x_1 + \cdots + a_n^1 p^{\frac{1}{2}(j-j_n+s_1)} v^{\frac{1}{2}}(d_n-d) x_n
\]
\[
= (a_0^0 p^{\frac{1}{2}(j-j_1)} + a_1^1 p^{\frac{1}{2}(j-j_1+s_1)}) v^{\frac{1}{2}}(d_1-d) x_1 + \cdots + (a_n^0 p^{\frac{1}{2}(j-j_n)} + a_n^1 p^{\frac{1}{2}(j-j_n+s_1)}) v^{\frac{1}{2}}(d_n-d) x_n.
\]
Let $z_2 = y - y_2$; then z_2 must be in filtration level $i - 1 - s_1$, so represents an element \bar{z}_2 in E_{i-2,s_2,s_2}^∞ for some $s_2 > s_1$. Inductively construct as above y_m, z_m, with $z_m \in E_{i-m,s_m,j,s_m}^\infty$ for a strictly increasing sequence of positive integers s_m and with y_m of the form
\[
y_m = (a_0^0 p^{\frac{1}{2}(j-j_1)} + \cdots + a_1^m p^{\frac{1}{2}(j-j_1+s_m)}) v^{\frac{1}{2}}(d_1-d) x_1 + \cdots + (a_n^0 p^{\frac{1}{2}(j-j_n)} + \cdots + a_n^m p^{\frac{1}{2}(j-j_n+s_m)}) v^{\frac{1}{2}}(d_n-d) x_n,
\]
where $a_0^m = 0$ if $j - j_\ell + s_m$ is odd or negative or if $d_\ell - d$ is odd. Because $s_m \to \infty$, the coefficients
\[
a_0^0 p^{\frac{1}{2}(j-j_1)} + \cdots + a_1^m p^{\frac{1}{2}(j-j_1+s_m)}
\]
converge to define an element y_∞ in the submodule of $\pi_*^G X$ generated by x_1, \ldots, x_n over $\pi_*^G THH(k)$. The difference $y - y_\infty$ is in filtration level s_m for all m, and so $y = y_\infty$ since the filtration on homotopy groups is complete.

17. Comparing monoidal models

In Section 11 we defined a lax monoidal model T^M for the Tate fixed point functor for any finite group G and in Section 2 we defined a lax symmetric monoidal model JT_G^∞. In this section we argue that these define the same lax monoidal structure on the Tate fixed points viewed as a functor to the stable category. This comparison is in itself is not enough to compare the map
\[
T^M X \wedge_{T^M A} T^M Y \to T^M (X \wedge A Y)
\]
we used in Section 5 to the map
\[
JT_G^\infty X \wedge_{JT_G^\infty A} JT_G^\infty Y \to JT_G^\infty (X \wedge A Y)
\]
implicitly in the statement of the main theorem; we also make that comparison here.
Both arguments use an elaboration of the operadic structure on T^O_G described in (2.4), which for $n = 2$ takes the form
\[O(2)_+ \land T^O_G(X) \land T^O_G(Y) \to T^O_G(X \land Y). \]

This structure uses the diagonal map on EG. Any operad O admits a canonical map $O \to \text{Com} \to O^\Sigma$ and we view the structure of (2.4) as corresponding to this map. We can use any map of operads $O \to O^\Sigma$ and then the structure in (2.4) generalizes to this context, where we use the coaction of O^Σ on EG in place of the diagonal map. This structure is natural in maps of (E_∞ or A_∞) operads over O^Σ.

Now consider the maps of operads over O^Σ
\[C_1 \leftarrow \mathcal{L} \times C_1 \to \mathcal{L} \times O^\Sigma_1 \leftarrow \mathcal{L} \]
where the lefthand map is projection, the middle map is induced by the inclusion of C_1 in O^Σ_1 and the righthand map is induced by the identity on \mathcal{L} and the map $\mathcal{L} \to \text{Com} \to O^\Sigma$. The backward maps are weak equivalence, and looking at the structure above, we get a natural commuting diagram
\[
\begin{array}{ccc}
\mathcal{T}_1(2)_+ \land T^\mathcal{L}_G X \land T^\mathcal{C}_1 Y & \to & T^\mathcal{C}_1(X \land Y) \\
\approx & \approx & \\
(\mathcal{L}(2) \times \mathcal{T}_1(2))_+ \land T^\mathcal{L} \times T^\mathcal{C}_1 X \land T^\mathcal{L} \times T^\mathcal{C}_1 Y & \to & T^\mathcal{L} \times T^\mathcal{C}_1(X \land Y) \\
\approx & \approx & \\
(\mathcal{L}(2) \times O^\Sigma(2))_+ \land T^\mathcal{L} \times O^\Sigma_1 X \land T^\mathcal{L} \times O^\Sigma_1 Y & \to & T^\mathcal{L} \times O^\Sigma_1(X \land Y) \\
\approx & \approx & \\
\mathcal{L}(2)_+ \land T^\mathcal{L}_G X \land T^\mathcal{C}_1 Y & \to & T^\mathcal{C}_1(X \land Y)
\end{array}
\]
(where we have used the identity permutation subspace $\mathcal{T}_1(2)$ of $C_1(2)$ for the entries involving C_1). Precomposing with the universal map from the derived smash product to the smash product and restricting to the case when X and Y are cofibrant, we get an analogous diagram with the smash product replaced by the derived smash product. Together with the canonical map $\mathcal{S} \to T^\mathcal{L} \mathcal{S}$, the horizontal maps give structure maps for lax monoidal structures on the Tate fixed point functor and the vertical maps imply that these structures coincide. We can now prove the following theorem.

Theorem 17.1. The canonical isomorphism in the stable category between JT_G and T^M preserves the lax monoidal structure.

Proof. The comparison of unit maps is clear. The canonical isomorphism in the stable category $JT^\mathcal{C}_G \to T^\mathcal{C}_G$ is symmetric monoidal and the canonical map in the stable category
\[\mathcal{L}(2)_+ \land T^\mathcal{L}_G X \land T^\mathcal{C}_1 Y \to T^\mathcal{C}_1 X \land T^\mathcal{C}_1 Y \]
is an isomorphism, so the work above reduces to comparing the associativity map for T^M to the associativity map on $T^\mathcal{C}_G$. For this it is enough to compare the associativity map for $T^\mathcal{C}_{*,*}$ and $T^\mathcal{C}_{*,*}$, where $T^\mathcal{C}_{*,*}$ is defined in Construction 11.1.
Compatibility of these maps is easily seen from the commuting diagram
\[
\begin{array}{ccc}
\bar{T}_{i_1,j_1} X \wedge \bar{T}_{i_2,j_2} Y & \longrightarrow & \bar{T}_{i,j}^M (X \wedge Y) \\
\downarrow & & \downarrow \\
\mathcal{T}_1(2)_+ \wedge \bar{T}_{i_1,j_1} X \wedge \bar{T}_{i_2,j_2} Y & \longrightarrow & \bar{T}_{i,j} (X \wedge Y)
\end{array}
\]
where the vertical map on the left is induced by
\[
\bar{T}_{i_1,j_1} X \wedge \bar{T}_{i_2,j_2} Y = (\bar{T}_{i_1,j_1} X \wedge \mathbb{R}^>^0) \wedge (\bar{T}_{i_2,j_2} Y \wedge \mathbb{R}^>^0) \\
\cong (\mathbb{R}^>^0 \times \mathbb{R}^>^0)_+ \wedge \bar{T}_{i_1,j_1} X \wedge \bar{T}_{i_2,j_2} Y \\
\longrightarrow \mathcal{T}_1(2)_+ \wedge \bar{T}_{i_1,j_1} X \wedge \bar{T}_{i_2,j_2} Y
\]
(with the last map induced by the map \(\mu_2\) of Construction 11.3), and the vertical map on the right is induced by the collapse map \(\mathbb{R}^>^0 \rightarrow \ast\). \(\square\)

Next we move on to compare the maps
\[
T^M X \wedge_{T^M} T^M Y \longrightarrow T^M (X \wedge_{A} Y)
\]
and
\[
JT_{G}^{\mathcal{T}} X \wedge_{JT_{G}^{\mathcal{T}}} JT_{G}^{\mathcal{T}} Y \longrightarrow JT_{G}^{\mathcal{T}} (X \wedge_{A} Y).
\]
First we need to compare the objects, and we follow roughly the same strategy as above, transporting the constructions across the maps of operads. Following the ideas of [25], we construct the balanced smash product of operadic modules.

The diagram preceding the previous theorem compares the \(n = 2\) case of the structure maps
\[
(17.2) \quad \mathcal{O}(n)_+ \wedge T_G^O X_1 \wedge \cdots \wedge T_G^O X_n \longrightarrow T_G^O (X_1 \wedge \cdots \wedge X_n)
\]
for \(\mathcal{O} = \mathcal{T}_1, \mathcal{C}, \mathcal{L} \times \mathcal{T}_1, \mathcal{L} \times \mathcal{O}_G^\times, \) or \(\mathcal{L}\), where \(\mathcal{O}(n)\) denotes the corresponding \(n\)th space (for the \(E_\infty\) operads) or identity permutation subspace (for the \(A_\infty\) operads). We also write \(\mathcal{O}\) for the non-\(\Sigma\) \(A_\infty\) operad corresponding to \(\mathcal{O}\). For one of the \(E_\infty\) operads \(\mathcal{O} = \mathcal{O}\) with the permutations forgotten, and for one of the \(A_\infty\) operads \(\mathcal{O}\) is the identity permutation component in each arity. It is clear from the general case of the structure map and comparison diagram that for an associative ring orthogonal \(G\)-spectrum \(A\), \(T_G^O A\) inherits the structure of a \((\nonSigma)\) \(\mathcal{O}\)-algebra and the maps of operads \(\mathcal{O} \rightarrow \mathcal{O'}\) over \(\mathcal{O}_G^\times\) induce maps of \(\mathcal{O}\)-algebras \(T_G^O A \rightarrow T_G^{O'} A\). In addition, for \(Y\) a left \(A\)-module, \(T_G^O Y\) inherits the structure of a left \(T_G^O A\)-module over \(\mathcal{O}\): It has structure maps of the form
\[
\mathcal{O}(n+1)_+ \wedge (T_G^O A)^{(n)} \wedge T_G^O Y \longrightarrow T_G^O Y
\]
(for \(n \geq 0\)) satisfying the usual unit and associativity conditions with respect to the operadic multiplication on \(A\). The maps of operads \(\mathcal{O} \rightarrow \mathcal{O'}\) above induce maps of left \(T_G^O A\)-modules over \(\mathcal{O}\). Analogous observations apply to right modules.

For an \(\mathcal{O}\)-algebra \(B\), the category of left \(B\)-modules over \(\mathcal{O}\) is equivalent to the category of left modules for an associative ring symmetric spectrum \(U_{\mathcal{O}} B\), called the left enveloping algebra. Concretely \(U_{\mathcal{O}} B\) can be constructed as the coequalizer
\[
\bigvee_{n,m_1,\ldots,m_n} (\mathcal{O}(n+1) \times (\mathcal{O}(m_1) \times \cdots \times \mathcal{O}(m_n)))_+ \wedge B^{(m)} \xrightarrow{\sim} \bigvee_n \mathcal{O}(n+1)_+ \wedge B^{(n)}
\]
We construct a right \((\mathcal{O}(1) \times \mathcal{O}(m_1) \times \cdots \times \mathcal{O}(m_n))\)
\[\cong \mathcal{O}(n+1) \times (\mathcal{O}(m_1) \times \cdots \times \mathcal{O}(m_n) \times \{1\}) \longrightarrow \mathcal{O}(m+1)\]
and the other by the \(\mathcal{O}\)-action
\[\mathcal{O}(m_i)_+ \wedge B^{(m_i)} \longrightarrow B.\]
The unit is induced by the map
\[S \cong \{1\}_+ \wedge S = \{1\}_+ \wedge B^{(0)} \longrightarrow \mathcal{O}(1) \wedge B^{(0)}\]
and the multiplication is induced by the map
\[(\mathcal{O}(n+1)_+ \wedge B^{(n)}) \wedge (\mathcal{O}(n'+1)_+ \wedge B^{(n')})\]
\[\cong (\mathcal{O}(n+1) \times \mathcal{O}(n'+1))_+ \wedge B^{(n+n')} \longrightarrow \mathcal{O}(n+n'+1)_+ \wedge B^{(n+n')}\]
induced by the operadic multiplication \(o_{n+1}\). Analogously, the category of right \(B\)-modules over \(\mathcal{O}\) is the category of right modules for the right enveloping algebra \(U_L^\mathcal{O} B\), which may be constructed as an analogous coequalizer with identical formulas except that it uses the map
\[\mathcal{O}(n+1) \times (\mathcal{O}(m_1) \times \cdots \times \mathcal{O}(m_n))\]
\[\cong \mathcal{O}(n+1) \times (\{1\} \times \mathcal{O}(m_1) \times \cdots \times \mathcal{O}(m_n)) \longrightarrow \mathcal{O}(m+1)\]
in the construction and the map
\[(\mathcal{O}(n+1)_+ \wedge B^{(n)}) \wedge (\mathcal{O}(n'+1)_+ \wedge B^{(n')})\]
\[\cong (\mathcal{O}(n'+1) \times \mathcal{O}(n+1))_+ \wedge B^{(n+n')} \longrightarrow \mathcal{O}(n+n'+1)_+ \wedge B^{(n+n')}\]
induced by \(o_1\) (leaving the factors of \(B\) in the same order) in the multiplication.

Construction 17.3. We construct a right \((U_R^\mathcal{O} B)^{op} \wedge (U_L^\mathcal{O} B)\)-module \(\text{Bal}^\mathcal{O}(B)\) as follows. The underlying orthogonal spectrum is the coequalizer
\[\bigvee_{n,m_1,\ldots,m_n} (\mathcal{O}(n+2) \times (\mathcal{O}(m_1) \times \cdots \times \mathcal{O}(m_n)))_+ \wedge B^{(m)} \cong \bigvee_n \mathcal{O}(n+2)_+ \wedge B^{(n)}\]
where one map is induced by the operadic multiplication
\[\mathcal{O}(n+2) \times (\mathcal{O}(m_1) \times \cdots \times \mathcal{O}(m_n))\]
\[\cong \mathcal{O}(n+2) \times (\{1\} \times \mathcal{O}(m_1) \times \cdots \times \mathcal{O}(m_n) \times \{1\}) \longrightarrow \mathcal{O}(m+2)\]
and the other by the \(\mathcal{O}\)-action
\[\mathcal{O}(m_i)_+ \wedge B^{(m_i)} \longrightarrow B.\]
The left \(U_R^\mathcal{O} B\)-action is induced by the map
\[(\mathcal{O}(n+1)_+ \wedge B^{(n)}) \wedge (\mathcal{O}(n'+2)_+ \wedge B^{(n')})\]
\[\cong (\mathcal{O}(n'+2) \times \mathcal{O}(n+1))_+ \longrightarrow \mathcal{O}(n'+n+2)_+ \wedge B^{(n+n')}\]
induced by \circ_1 (where the factors of B remain in the same order). The right $U\overline{\mathcal{C}} B$-action is induced by the map

$$(\overline{\mathcal{O}}(n' + 2)_+ \wedge B^{(n''}) \wedge (\overline{\mathcal{O}}(n + 1)_+ \wedge B^{(n)})$$

$$\cong (\overline{\mathcal{O}}(n' + 2) \times \overline{\mathcal{O}}(n + 1))_+ \longrightarrow \overline{\mathcal{O}}(n' + n + 2)_+ \wedge B^{(n'' + n)})$$

induced by $\circ_{n'+2}$.

Definition 17.4. Let $\overline{\mathcal{O}}$ be a non-Σ A_∞ operad, let B be an $\overline{\mathcal{O}}$-algebra, let M be a right B-module over $\overline{\mathcal{O}}$, and let N be a left B-module over $\overline{\mathcal{O}}$. Define the point-set balanced smash product of M and N over B and $\overline{\mathcal{O}}$ to be the orthogonal spectrum

$$M \wedge_B N := \operatorname{Bal}_{\overline{\mathcal{O}}} (B) \wedge (U\overline{\mathcal{O}} B) \wedge (U\overline{\mathcal{O}} B) (M \wedge N),$$

an enriched bifunctor

$$\mathcal{M}_{od}^{r}_{U\overline{\mathcal{O}} B} \cdot \mathcal{M}_{od}^{l}_{U\overline{\mathcal{O}} B} \longrightarrow \mathcal{S}.$$

This definition relates to the example of $T\overline{\mathcal{O}} G$ as follows. When A is an associative ring orthogonal G-spectrum and X and Y are right and left A-modules, the structure maps (17.2)

$$\overline{\mathcal{O}}(n + 2)_+ \wedge T_G X \wedge (T_G A)^{(n)} \wedge T_G Y \longrightarrow T_G (X \wedge A^{(n)} Y) \longrightarrow T_G (X \wedge A Y)$$

fit together to define a map

$$(17.5) \quad T_G X \wedge_{T_G A} T_G Y \longrightarrow T_G (X \wedge A Y),$$

naturally in A, X, Y, and \mathcal{O}.

We have a derived version of the balanced smash product that is easiest to define if we restrict to the non-Σ A_∞ operads $\overline{\mathcal{C}}_1$, $\mathcal{L} \times \overline{\mathcal{C}}_1$, $\mathcal{L} \times \mathcal{O}^{\mathcal{C}}_1$, and \mathcal{L} involved in our comparison. These operads have the following special property that we prove in the next section.

Theorem 17.6. Let $\overline{\mathcal{O}} = \overline{\mathcal{C}}_1$, $\mathcal{L} \times \overline{\mathcal{C}}_1$, $\mathcal{L} \times \mathcal{O}^{\mathcal{C}}_1$, or \mathcal{L}, and let B be any $\overline{\mathcal{O}}$-algebra. The maps

$$\overline{\mathcal{O}}(2)_+ \wedge B \longrightarrow U\overline{\mathcal{C}} B,$$

$$\overline{\mathcal{O}}(2)_+ \wedge B \longrightarrow U\overline{\mathcal{C}} B,$$

$$\overline{\mathcal{O}}(3)_+ \wedge B \longrightarrow \operatorname{Bal}_{\overline{\mathcal{O}}} B$$

in the defining colimits are weak equivalences.

Remark 17.7. For more general non-Σ A_∞ operads, we do not expect the enveloping algebras to always have the correct homotopy type for arbitrary $\overline{\mathcal{O}}$-algebras B; they will, however, have the correct homotopy types for cofibrant $\overline{\mathcal{O}}$-algebras, and so cofibrant replacement of the algebra B is necessary to obtain the correct derived categories of B-modules in this setting. This presents no real practical difficulties except to complicate definitions and statements of theorems. To avoid these complications, we define derived functors only for $\overline{\mathcal{O}} = \overline{\mathcal{C}}_1$, $\mathcal{L} \times \overline{\mathcal{C}}_1$, $\mathcal{L} \times \mathcal{O}^{\mathcal{C}}_1$, or \mathcal{L}.

Definition 17.8. For $\overline{\mathcal{O}} = \overline{\mathcal{C}}_1$, $\mathcal{L} \times \overline{\mathcal{C}}_1$, $\mathcal{L} \times \mathcal{O}^{\mathcal{C}}_1$, or \mathcal{L}, define the derived balanced smash product $\operatorname{Tor}^B_{\overline{\mathcal{O}}} (M, N)$ as the left derived enriched bifunctor [21, 5.3] of the point-set balanced product functor.
As a special case of [21, 8.2], the derived balanced smash product may be constructed by using a cofibrant left \((U_R^\mathcal{C} B)^{op} \land (U_L^\mathcal{C} B)\)-module approximation of \(M \land N\); one good way to choose such an approximation is to smash a cofibrant right \(U_R^\mathcal{C} B\)-module approximation of \(M\) with a cofibrant left \(U_L^\mathcal{C} B\)-module approximation of \(N\).

We now need to compare the balanced smash product of Definition 17.4 with the Blumberg-Hill EKMM smash product in \(\mathcal{L}(1)\)-spectra in orthogonal spectra and the balanced smash product of modules over an associative ring orthogonal spectrum. The first of these is the following theorem, the proof of which is given in the next section. Recall that we use \(J\) to denote the functors \((-) \land_* \mathbb{S}\) from \(\mathcal{L}(1)\)-spectra in orthogonal spectra to EKMM \(\mathbb{S}\)-modules in orthogonal spectra.

Theorem 17.9. Let \(B\) be an associative ring EKMM \(\mathbb{S}\)-module in orthogonal spectra, \(M\) a right \(B\)-module, and \(N\) a left \(B\)-module (for the EKMM smash product). Then the Blumberg-Hill EKMM smash product \(M \land_B N\) is canonically isomorphic to \(J(M \land_* \mathbb{S})\) for the balanced smash product constructed in Definition 17.4.

The following is now an immediate consequence of Theorems 17.6 and 17.9.

Corollary 17.10. Let \(A\) be an associative ring orthogonal \(G\)-spectrum, let \(X\) be a right \(A\)-module and let \(Y\) be a left \(A\)-module. Then the natural transformations of balanced smash products

\[
T_G^C X \land_{T_G^C A} T_G^C Y \quad \cdasharrow \quad T_G^C \times T_G^C X \times (T_G^C \times T_G^C A) \quad T_G^C \times T_G^C Y \\
\quad \leftarrow J(JT_G^\mathcal{C} X \times (JT_G^\mathcal{C} A) JT_G^\mathcal{C} Y) \cong JT_G^\mathcal{C} X \times JT_G^\mathcal{C} A JT_G^\mathcal{C} Y
\]

induce isomorphism of derived balanced smash products.

We still need to compare the balanced smash product \(T_G^C X \land_{T_G^C A} T_G^C Y\) in the context of \(\mathcal{C}_1\)-algebras and modules with the balanced smash product \(T^M X \land_{T^M A}\)

\(T^M Y\) in the context of associative orthogonal spectra and modules. As in Section 11, for any \(\mathcal{C}_1\)-algebra \(B\), we can form the Moore construction \(B^M\) as the pushout

\[
B^M := (S \land \mathbb{R}_+^{\geq 0}) \cup_{S \land \mathbb{R}_+^{\geq 0}} (B \land \mathbb{R}_+^{\geq 0}),
\]

which has the natural structure of an associative ring orthogonal spectrum and also has the property that the canonical map \(B^M \to B\) (induced by the map collapsing \(\mathbb{R}\) to a point) is a homotopy equivalence of orthogonal spectra. Given \(X\) and \(Y\) right and left \(B\)-modules over \(\mathcal{C}_1\), the Moore construction \((-)^M := (-) \land \mathbb{R}_+^{\geq 0}\) converts \(X\) and \(Y\) to \(B^M\)-modules. We then have a natural map

\[
X^M \land_{B^M} Y^M \cong X^M \land_{B^M} B^M \land_{B^M} Y^M \rightarrow X \land_{B^M} Y
\]

induced by the map \(\mu_3\) (from Construction 11.3) interpreted as a map

\[
(X \land \mathbb{R}_+^{\geq 0}) \land (B \land \mathbb{R}_+^{\geq 0}) \land (Y \land \mathbb{R}_+^{\geq 0}) \rightarrow \mathcal{C}_1(3)_+ \land X \land B \land Y
\]

and the unital extension of \(\mu_3\) viewed as a map

\[
(X \land \mathbb{R}_+^{\geq 0}) \land (S \land \mathbb{R}_+^{\geq 0}) \land (Y \land \mathbb{R}_+^{\geq 0}) \rightarrow \mathcal{C}_1(2)_+ \land X \land Y
\]
composed with the maps in the defining colimit
\[
\overline{C}_1(3)_+ \wedge X \wedge B \wedge Y \to X \wedge \overline{B}_1 Y \quad \text{and} \quad \overline{C}_1(2)_+ \wedge X \wedge Y \to X \wedge \overline{B}_1 Y.
\]

Theorem 17.11. For \(B \) a \(\overline{C}_1 \)-algebra and \(X \) and \(Y \) right and left \(B \)-modules over \(\overline{C}_1 \), the canonical map
\[
X^M \wedge_{BM} Y^M \to X \wedge_{\overline{B}_1} Y
\]
induces an isomorphism on the derived balanced smash products.

Proof. The proof follows the usual induction up the cellular filtration argument. We may as well take \(X \) and \(Y \) to be cofibrant. Let \(Y' \to Y^M \) be a cofibrant approximation; we want to show that the composite point-set map
\[
X^M \wedge_{BM} Y' \to X^M \wedge_{BM} Y^M \to X \wedge_{\overline{B}_1} Y
\]
is a weak equivalence. Without loss of generality, we can assume that \(Y \) is a cellular left \(B \)-module, \(Y = \text{colim} Y_n \) where each \(Y_n \) is formed as the pushout of cell attachments using the generating cofibrations \([24, 12.1]\) in the model category of \(U_{L}^1 \)-\(B \)-modules as cells. We can likewise arrange that \(Y' = \text{colim} Y'_n \) where each \(Y'_n \to Y'_{n+1} \) is the inclusion of a subcomplex, and we have a system of compatible weak equivalences \(Y'_n \to Y^M_n \). Since both \(X^M \wedge_{BM} (-) \) and \(X \wedge_{\overline{B}_1} (-) \) preserve \(h \)-cofibrations and all colimits, it suffices to show that the maps
\[
X^M \wedge_{BM} (Y'_n/Y'_{n-1}) \to X^M \wedge_{BM} (Y^M_n/Y^M_{n-1}) \to X \wedge_{\overline{B}_1} (Y_n/Y_{n-1})
\]
are weak equivalences, where we understand \(Y'_{-1} = Y_{-1} = \ast \). Since both functors \(X^M \wedge_{BM} (-) \) and \(X \wedge_{\overline{B}_1} (-) \) preserve weak equivalences between cofibrant objects and coproducts, it suffices to consider the case when \(Y_n/Y_{n-1} = B \wedge F_n S^m \) (for some \(m, n \in \mathbb{N} \)) and this case is clear. \(\square \)

Corollary 17.12. Let \(A \) be an associative ring orthogonal \(G \)-spectrum, let \(X \) be a right \(A \)-module and let \(Y \) be a left \(A \)-module. Then the natural transformation of balanced smash products
\[
T^M X \wedge_{TM A} T^M Y \to T^G \overline{C}_1 X \wedge_{T^G \overline{C}_1 A} T^G \overline{C}_1 Y
\]
induces an isomorphism on derived balanced smash products.

If the underlying orthogonal \(G \)-spectra of \(X \) and \(Y \) come with structure maps \(S \to X \) and \(S \to Y \), then the natural transformation of balanced smash products
\[
T^M X \wedge_{TM A} T^M Y \to T^M X \wedge_{TM A} T^M Y
\]
induces a weak equivalence of derived balanced smash products. This completes a comparison of the derived balanced smash product for our filtered lax monoidal model and our (point-set) lax symmetric monoidal model. For the comparison of the maps
\[
T^M X \wedge_{TM A} T^M Y \to T^M (X \wedge_A Y)
\]
and
\[
JT_G^\xi X \wedge_{JT_G^\xi A} JT_G^\xi Y \to JT_G^\xi (X \wedge_A Y)
\]
we combine with the natural maps on derived functors induced by the maps (17.5) to obtain the following commuting diagram, where all vertical arrows are isomorphisms in the stable category.

\[
\begin{array}{ccc}
T^M X \wedge_{T^M A} T^M Y & \xrightarrow{\simeq} & T^M (X \wedge_{A} Y) \\
\downarrow \simeq & & \downarrow \simeq \\
\text{Tor}^c_{G} (T^c G X, T^c G Y) & \xrightarrow{\simeq} & \text{Tor}^c_{G} (X \wedge_{A} Y) \\
\downarrow \simeq & & \downarrow \simeq \\
\text{Tor}^{c \times c} (T^G X, T^G Y) & \xrightarrow{\simeq} & \text{Tor}^{c \times c} (X \wedge_{A} Y) \\
\downarrow \simeq & & \downarrow \simeq \\
\text{Tor}^{c \times c, c} (T^G X, T^G Y) & \xrightarrow{\simeq} & \text{Tor}^{c \times c, c} (X \wedge_{A} Y) \\
\downarrow \simeq & & \downarrow \simeq \\
JT^G X \wedge_{JT^G A} JT^G Y & \xrightarrow{\simeq} & JT^G (X \wedge_{A} Y)
\end{array}
\]

18. Identification of the Enveloping Algebras and Bal

In this section, we identify in more concrete terms the enveloping algebras $U^G B$, $U^G R$, and balanced product object $\text{Bal}^\Sigma B$ for an algebra B over one of the particular non-Σ A_∞ operads $\overline{\mathcal{O}} = \overline{c}_1$, $\mathcal{L} \times \overline{c}_1$, $\mathcal{L} \times \overline{c}_1^\Sigma$, and \mathcal{L}. As a consequence, we deduce Theorems 17.6 and 17.9. The theorems only refer to the underlying orthogonal spectra, but we have included a full description of the ring and module structures for completeness. We work one operad at a time. In each of the following subsections, we use B to denote an arbitrary $\overline{\mathcal{O}}$-algebra for the given non-Σ operad $\overline{\mathcal{O}}$.

The operad \overline{c}_1. For this operad, the left enveloping algebra was identified in [25, 2.5] and we only need to review its description.

Let D denote the subspace of $\overline{c}_1(1)$ where the interval does not start at 0; then $U^G_{\overline{c}_1} B$ is the pushout

\[U^G_{\overline{c}_1} B = (\overline{c}_1(1)_+ \wedge \mathbb{S}) \cup_{D_+ \wedge \mathbb{S}} (D_+ \wedge B) \]

with unit induced by the map

\[\mathbb{S} \cong \{1\}_+ \wedge \mathbb{S} \longrightarrow \overline{c}_1(1)_+ \wedge \mathbb{S} \longrightarrow U^G_{\overline{c}_1} B \]

and product induced as follows. Given elements $[x_1, y_1]$ and $[x_2, y_2]$ of D, we get an element

\[[0, x_1/(x_1 + (y_1 - x_1)x_2)], [x_1/(x_1 + (y_1 - x_1)x_2), 1] \]

do $\overline{c}_1(2)$ and an element

\[[x_1 + (y_1 - x_1)x_2, x_1 + (y_1 - x_1)y_2] \]
do D. This can also be expressed in terms of c_2 where we view D as in [25, §2] as the subset of $\overline{c}_1(2)$ where the first interval starts at 0 and ends at the start of the
second interval, which is the given interval that does not start at 0. The picture of
\{[0, x_1], [y_1, x_2]\} \cup \{[0, x_2], [x_2, y_2]\} is

The first two segments translated and rescaled to begin at 0 and end at 1 give the element of \(C_1(2)\) and the third segment gives the element of \(D\). We use the element of \(C_1(2)\) to multiply the copies of \(B\) and the element of \(D\) above for the new element of \(D\). More formally, writing \(f: D \times D \to C_1(2)\) and \(g: D \times D \to C_1(1)\), the product is induced by

\[
(D \wedge B) \wedge (D \wedge B) \cong (D \times D) \wedge B \wedge B \to D \wedge C_1(2) \wedge B \wedge B \to D \wedge B
\]

where \(\xi\) is the action of \(C_1\) on \(B\).

The right enveloping algebra has a similar description except that we use the subspace \(D'\) of \(C_1(1)\) of intervals that do not end at 1. The underlying orthogonal spectrum is then

\[
U^R_B = (C_1(1) \wedge B) \cup_{D \wedge B} (D' \wedge B)
\]

with unit induced by the map

\[
\mathbb{S} \cong \{1\} \wedge \mathbb{S} \to C_1(1) \wedge \mathbb{S} \to U^R_B
\]

and product induced by the maps \(D' \times D' \to C_1(2)\) and \(D' \times D' \to D'\) that send the pair of elements \([x_1, y_1]\) and \([x_2, y_2]\) of \(D\) to the element

\[
\left[0, \frac{(y_2 - x_2)(1 - y_1)}{(y_2 - x_2)(1 - y_1) + (1 - y_2)}\right] \cdot \left[\frac{(y_2 - x_2)(1 - y_1)}{(y_2 - x_2)(1 - y_1) + (1 - y_2)}, 1\right]
\]

of \(C_1(2)\) and the element

\[
[x_2 + (y_2 - x_2)x_1, x_2 + (y_2 - x_2)y_1]
\]

of \(D'\), respectively. Here we are using the \(\alpha_1\) product \(\{[x_2, y_2], [y_2, 1]\} \alpha_1 \{[x_1, y_1], [y_1, 1]\}\), whose picture is

The last two segments translated and rescaled to start at 0 and end at 1 give the element of \(C_1(2)\) and the third segment (whose length is \((y_2 - x_2)(y_1 - x_1)\)) gives the element of \(D'\).

To identify \(B^C_1, B\), let \(C\) be the subset of \(C_1(2)\) consisting of those pairs of intervals \([a, b], [c, d]\) with \(b < c\). Let \(Z\) be the pushout

\[
Z = (C_1(2) \wedge \mathbb{S}) \cup_{C \wedge \mathbb{S}} (C \wedge B).
\]

We define the right \(U^R_B\)-module structure essentially using \(\alpha_2\). Specifically, we have maps

\[
C \times D \to C_1(2) \quad \text{and} \quad C \times D \to C
\]
sending the elements \([a,b], [c,d]\) in \(C\) and \([x,y]\) in \(D\) to
\[
[0, (c-b)/(c-b+x(d-c))], [(c-b)/(c-b+x(d-c)), 1]
\]
in \(\mathcal{C}_1(2)\) and
\[
[a,b], [(c + (d-c)x, c + (d-c)y]
\]
in \(C\), respectively; we use the element of \(\mathcal{C}_1(2)\) to multiply the two factors of \(B\) and the element of \(C\) as the new element of \(C\). Pictorially,

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c-b} \\
\text{(d-c)x} \\
\text{d} \\
\hline
\text{(d-c)y}
\end{array}
\]

the element in \(\mathcal{C}_1(2)\) is the third and fourth segments translated and rescaled to start at 0 and end at 1, while the element of \(C\) is the second and fifth segments. We also need to describe what the action of the \(\mathcal{C}_1(1)_+ \wedge S\) part does; the same formulas apply (the first formula meaning to use the isomorphism \(B \wedge S \cong B\)), and so it is easy to see that this describes a well-defined pairing \(Z \wedge U_{L_1} B \to Z\). Examining the formula for \(\{[0,1]\}_+ \wedge S\) shows that the pairing is unital, and an tedious arithmetic check shows that it is associative.

The left action of \(U_{d_1} B\) is similar, using \(\circ_1\) (on \(C\)) instead of \(\circ_2\): We have maps
\[
D' \times C \to \mathcal{C}_1(2) \quad \text{and} \quad D' \times C \to C
\]
that take the pair of elements \([x,y]\) in \(D'\) and \([a,b], [c,d]\) in \(C\) (with \(b < c\)) to the element
\[
\begin{bmatrix}
0, \frac{(b-a)(1-y)}{(b-a)(1-y) + c-b} \\
\frac{(b-a)(1-y)}{(b-a)(1-y) + c-b}, 1
\end{bmatrix}
\]
in \(\mathcal{C}_1(2)\) and the element
\[
[a + (b-a)x, a + (b-a)y], [c, d]
\]
of \(C\). Pictorially,

\[
\begin{array}{c}
\text{a} \\
\text{(b-a)x} \\
\text{b} \\
\text{c} \\
\text{(b-a)y} \\
\text{(b-a)(1-y)} \\
\text{(c-b)} \\
\text{d} \\
\hline
\end{array}
\]

the element of \(\mathcal{C}_1(2)\) is the fourth and fifth segments translated and rescaled to start at 0 and end at 1, and the element of \(C\) is the third and sixth segments.

To see that the two actions commute, we note that the two maps
\[
U_{d_2} B \wedge Z \wedge U_{d_1} B
\]
can each be written in terms of maps
\[
D' \times C \times D \to \mathcal{C}_1(3) \quad \text{and} \quad D' \times C \times D \to C
\]
using the element of \(\mathcal{C}_1(3)\) to multiply the three factors of \(B\). Writing \([x',y']\) for the element of \(D'\), \([a,b], [c,d]\) for the element of \(C\), and \([x_2,y_2]\) for the element of \(D\), both maps give the same element
\[
\begin{bmatrix}
0, \frac{(b-a)(1-y')}{(b-a)(1-y')} \\
\frac{(b-a)(1-y')}{(b-a)(1-y') + (b-c)} \\
\frac{(b-a)(1-y') + (b-c)}{(b-a)(1-y')}, 1
\end{bmatrix}
\]
of $\mathcal{C}_1(3)$, where $\ell = (b - a)(1 - y') + c - b + (d - c)x$, and both maps give the same element

$$[a + (b - a)x', a + (b - a)y'], [c + (d - c)x, c + (d - c)y]$$

of C. Pictorially,

$\begin{align*}
& a \quad (b-a)x' \\
& b \quad (c-b) \\
& c \quad (d-c)x \\
& d \quad (b-a)y' \quad (b-a)(1-y') \quad (d-c)y
\end{align*}$

the element of $\mathcal{C}_1(3)$ for both maps consists of the fourth, fifth, and sixth segments translated and rescaled to start at 0 and end at 1, and the element of C consists of the third and seventh segments.

The map $C \to \mathcal{C}_1(3)$ together with the maps $\mathcal{C}_1(3)_+ \wedge B \to \text{Bal}^{\mathbb{F}_1} B$ and $\mathcal{C}_1(2)_+ \wedge S \to \text{Bal}^{\mathbb{F}_1} B$ induces a map $Z \to \text{Bal}^{\mathbb{F}_1} B$.

Theorem 18.1. The map $Z \to \text{Bal}^{\mathbb{F}_1} B$ is an isomorphism of right $(U^\mathbb{F}_R B)^{\text{op}} \wedge U^\mathbb{F}_L B$-modules.

Proof. We construct a map $\text{Bal}^{\mathbb{F}_1} B \to Z$ by constructing compatible maps $\mathcal{C}_1(n + 2)_+ \wedge B^{(n)} \to Z$ as follows. For $n = 0$, we use the map $\mathcal{C}_1(2)_+ \wedge S \to Z$ from the construction of Z. For $n > 0$, we have an isomorphism

$$\mathcal{C}_1(n + 2) \to C \times \mathcal{C}_1(n)$$

defined by taking the element

$$[x_0, y_0], \ldots, [x_{n+1}, y_{n+1}]$$

in $\mathcal{C}_1(n + 2)$ (with $y_i \leq x_{i+1}$) to the element $[x_0, y_0], [x_{n+1}, y_{n+1}]$ of C and the element

$$\left[\frac{x_1 - y_0}{x_{n+1} - y_0} \frac{y_1 - y_0}{x_{n+1} - y_0} \right], \ldots, \left[\frac{x_n - y_0}{x_{n+1} - y_0} \frac{y_n - y_0}{x_{n+1} - y_0} \right]$$

in $\mathcal{C}_1(n)$. We then get a map $\mathcal{C}_1(n + 2)_+ \wedge B^{(n)} \to Z$ using the given element of C and the element of $\mathcal{C}_1(n)$ to multiply the factors of B. This obviously factors through the coequalizer to define a map $\text{Bal}^{\mathbb{F}_1} B \to Z$. Looking at the composite maps

$$\mathcal{C}_1(2)_+ \wedge S \to \text{Bal}^{\mathbb{F}_1} B \to Z \quad \text{and} \quad C_+ \wedge B \to \mathcal{C}_1(3)_+ \wedge B \to \text{Bal}^{\mathbb{F}_1} B \to Z,$$

we see that the composite map on Z is the identity. Likewise, looking at the surjection $\circ_2: \mathcal{C}_1(3) \times \mathcal{C}_1(n) \to \mathcal{C}_1(n + 2)$ for $n > 0$ (which induces the inverse of the isomorphism above when restricted to $C \times \mathcal{C}_1(n)$), we can see that the composite on $\text{Bal}^{\mathbb{F}_1} B$ is the identity. To see that $\text{Bal}^{\mathbb{F}_1} B \to Z$ is a map of bimodules, it suffices to check each of the module structures separately. The left action of $U^\mathbb{F}_R B$ on $\text{Bal}^{\mathbb{F}_1} B$ is induced by

$$(\mathcal{C}_1(m + 1)_+ \wedge B^{(m)})(\mathcal{C}_1(n + 2)_+ \wedge B^{(n)})$$

$$\cong (\mathcal{C}_1(n + 2) \times \mathcal{C}_1(m + 1))_+ \wedge B^{(m+n)} \xrightarrow{\circ_1 \wedge \text{id}} \mathcal{C}_1(m + n + 2)_+ \wedge B^{(m+n)}.$$
It is now easy to check in the case $m = 0, 1, n = 0, 1$ that the composite map to Z is the same as the composite

$$(C_1(m + 1)_+ \wedge B^{(m)}) \cup (C_1(n + 2)_+ \wedge B^{(n)}) \to U^C_{\mathcal{L}} B \wedge Z$$

with the action map $U^C_{\mathcal{L}} B \wedge Z$ defined above, and this suffices to show the result.

The case of the right action by $U^L_{\mathcal{L}} B$ is similar.

We can now prove the case of Theorem 17.6 for $\mathcal{O} = \mathcal{C}_1$, which we state as the following proposition.

Proposition 18.2. The maps $\mathcal{C}_1(2)_+ \wedge B \to U^C_{\mathcal{L}} B$, $\mathcal{C}_1(2)_+ \wedge B \to U^C_{\mathcal{L}} B$, and $\mathcal{C}_1(3)_+ \wedge B \to \text{Bal}^{C_1} B$ are homotopy equivalences of orthogonal spectra.

Proof. The case of the enveloping algebras are essentially proved in [25, 1.1], but it is no extra work to include those cases here. We have maps

$$U^C_{\mathcal{L}} B \to B, \quad U^C_{\mathcal{R}} B \to B, \quad \text{Bal}^{C_1} B \to B$$

induced by the maps $\mathcal{C}_1(1) \to *, \mathcal{C}_1(2) \to *, \text{and } \mathcal{C}_1(3) \to *$. Choosing elements in $\mathcal{C}_1(2)$ and $\mathcal{C}_1(3)$, we then get composite maps

$$U^C_{\mathcal{L}} B \to \mathcal{C}_1(2)_+ \wedge B, \quad U^C_{\mathcal{R}} B \to \mathcal{C}_1(2)_+ \wedge B, \quad \text{Bal}^{C_1} B \to \mathcal{C}_1(3)_+ \wedge B$$

and we see that the composites on $\mathcal{C}_1(2)_+ \wedge B$ and $\mathcal{C}_1(3)_+ \wedge B$ are homotopic to the identity since $\mathcal{C}_1(2)$ and $\mathcal{C}_1(3)$ are contractible. Likewise, it is straightforward to write explicit formulas for contractions on the pairs $(\mathcal{C}_1(1), D)$, $(\mathcal{C}_1(1), D')$, and $(\mathcal{C}_1(2), C)$ that produce the homotopies for the composites on $U^C_{\mathcal{L}} B$, $U^C_{\mathcal{R}} B$, and $\text{Bal}^{C_1} B$. \qed

The operad \mathcal{L}. For the \mathcal{L} we also need to prove Theorem 17.9 in addition to Theorem 17.6. For this operad, we adapt the techniques of EKMM [10, §I.5]. We begin by identifying the enveloping algebras.

Proposition 18.3. The underlying orthogonal spectra of $U^C_{\mathcal{L}} B$ and $U^C_{\mathcal{R}} B$ are naturally isomorphic to the pushout

$$(\mathcal{L}(1)_+ \wedge S) \cup_{\mathcal{L}(2)_+ \wedge \mathcal{L}(1) \wedge B} (\mathcal{L}(2) \wedge \mathcal{L}(1) \wedge B)$$

where for $U^C_{\mathcal{L}} B$ the action of $\mathcal{L}(1)$ on $\mathcal{L}(2)$ is via $\mathcal{L}(1) \times \{1\} \subset \mathcal{L}(1) \times \mathcal{L}(1)$ and for $U^C_{\mathcal{R}} B$ the action of $\mathcal{L}(1)$ on $\mathcal{L}(2)$ is via $\{1\} \times \mathcal{L}(1) \subset \mathcal{L}(1) \times \mathcal{L}(1)$.

Proof. We treat the case of $U^C_{\mathcal{L}} B$ as the other case is entirely similar. For the purpose of the proof, denote the pushout as P. The defining coequalizer for $U^C_{\mathcal{L}} B$ induces the map $P \to U^C_{\mathcal{L}} B$. Using Hopkins’ Lemma [10, I.5.4], we have isomorphisms

$$\mathcal{L}(n + 1)_+ \wedge B^{(n)} \cong \mathcal{L}(2)_+ \wedge \mathcal{L}(1) (\mathcal{L}(n)_+ \wedge B^{(n)})$$

from which the \mathcal{L}-action on B induces a map to P. These maps glue over the coequalizer to construct a map $U^C_{\mathcal{L}} B \to P$. We see that the composite map is the identity on P by looking at the composite maps $\mathcal{L}(2)_+ \wedge B \to P$ and $\mathcal{L}(1)_+ \wedge S \to P$. Likewise the map

$$(\mathcal{L}(1)_+ \wedge B) \vee (\mathcal{L}(2)_+ \wedge (\mathcal{L}(n)_+ \wedge B^{(n)})) \to U^C_{\mathcal{L}} B$$
is unchanged by composing with the composite \(U^E B \to P \to U^E B\), and we conclude that the composite is the identity on \(U^E B\) (since the coequalizer description of \(U^E B\) plus Hopkins’ Lemma implies that the displayed map is an epimorphism). \(\Box\)

For the pushout description of \(U^E B\) in the previous proposition, the unit \(S \to U^E B\) is induced by the map

\[
S \cong \{1\} \ast S \to \mathcal{L}(1) \ast S \to U^E B.
\]

The product is induced by the map

\[
(L(2) \ast \mathcal{L}(1) B) \ast (L(2) \ast \mathcal{L}(1) B) \to (L(2) \ast \mathcal{L}(1) B) \ast \mathcal{L}(1) (L(2) \ast \mathcal{L}(1) B)
\]

\[
\cong L(3) \ast \mathcal{L}(1) \ast \mathcal{L}(1) B \ast B \cong L(2) \ast \mathcal{L}(1) (L(2) \ast \mathcal{L}(1) B \ast B)
\]

\[
\to L(2) \ast \mathcal{L}(1) B
\]

and the straightforward modifications using \(\mathcal{L}(1) \ast S\) in place of one or both copies of \(L(2) \ast B\) with \(\mathcal{L}(1) \ast S\). (The latter is the map

\[
(L(1) \ast S) \ast (L(1) \ast S) \cong (L(1) \times L(1)) \ast S \to L(1) \ast S
\]

induced by the operadic multiplication.) The product for \(U^E B\) is similar except that the operad factors (but not the \(B\) factors) transpose, plugging the left \(L(2)\) into the right \(L(2)\) with respect to the operadic multiplication.

We have the following concrete description of \(\text{Bal}^L B\). The proof uses the same techniques as the proof of the previous proposition.

Proposition 18.4. The underlying orthogonal spectrum of \(\text{Bal}^L B\) is the pushout

\[
(L(2) \ast S) \cup_{\mathcal{L}(3) \ast \mathcal{L}(1) S} (L(3) \ast \mathcal{L}(1) B)
\]

where the action of \(L(1)\) on \(L(3)\) is via \(\{1\} \times L(1) \times \{1\} \subset L(1) \times L(1) \times L(1)\).

The right action of \(U^E B\) is induced by the map

\[
(L(3) \ast \mathcal{L}(1) B) \ast (L(2) \ast \mathcal{L}(1) B) \to L(4) \ast \mathcal{L}(1) \times
\]

\[
B \ast B \to L(3) \ast \mathcal{L}(1) B
\]

again multiplying \(L(2) \ast \mathcal{L}(1) \times L(1) B \ast B \to B\) on the inner factors of \(B\), using Hopkins’ Lemma (with similar formulas for \(L(2) \ast S\) and/or \(L(1) \ast S\)). The left action of \(U^E B\) is similar but transposing the operad spaces so that the operad space for \(U^E B\) plugs in to the operad space for \(\text{Bal}^L B\) for the operadic multiplication.

Turning to Theorem 17.9, recall that \(J(-) = (-) \ast \mathcal{S}\) denotes the functor from \(L(1)\)-spectra in orthogonal spectra to EKMM \(S\)-modules in orthogonal spectra. One feature it has is that \(J\) turns the maps \(L(n) \ast \mathcal{S} \to L(n-1) \ast \mathcal{S}\) into isomorphisms (another application of Hopkins’ Lemma). Because of this we then have natural isomorphisms

\[
J U^E B \cong J(L(2) \ast \mathcal{L}(1) B)
\]

(18.5)

\[
J U^E B \cong J(L(2) \ast \mathcal{L}(1) B)
\]

\[
J \text{Bal}^L B \cong J(L(3) \ast \mathcal{L}(1) B)
\]

When \(B\) is already an EKMM \(S\)-module in orthogonal spectra, we can omit the \(J\) on the right side. We now prove Theorem 17.9.
Proof of Theorem 17.9. It suffices to construct an isomorphism between \(J(M \wedge B N)\) and \(M \wedge B N\), where the smash products without the superscript denote smash in the category of EKMM \(\mathcal{S}\)-modules in orthogonal spectra. With the simplification of (18.5), we have \(J(M \wedge B N)\) as the coequalizer of

\[
(\mathcal{L}(3)_+ \wedge_{\mathcal{L}(1)} B) \wedge (U^L_B B)^{op} \wedge U^L_B B \wedge M \wedge N \quad \Downarrow \\
(\mathcal{L}(3)_+ \wedge_{\mathcal{L}(1)} B) \wedge M \wedge N.
\]

Because of the maps \(\mathcal{L}(1)_+ \wedge \mathcal{S} \to (U^L_B B)^{op}\) and \(\mathcal{L}(1)_+ \wedge \mathcal{S} \to U^L_B B\), we can replace the \((\mathcal{L}(3)_+ \wedge_{\mathcal{L}(1)} B) \wedge M \wedge N\) with \((\mathcal{L}(3)_+ \wedge_{\mathcal{L}(1)} B) \wedge (M \wedge B \wedge N)\). Also using (18.5) to replace the enveloping algebras with \(\mathcal{L}(2)_+ \wedge_{\mathcal{L}(1)} B\), we then identify \(J(M \wedge B N)\) as the coequalizer of

\[
(\mathcal{L}(3)_+ \wedge_{\mathcal{L}(1)} B) \wedge (\mathcal{L}(2)_+ \wedge_{\mathcal{L}(1)} B) \wedge (\mathcal{L}(2)_+ \wedge_{\mathcal{L}(1)} B) \wedge M \wedge N \quad \Downarrow \\
\mathcal{L}(3)_+ \wedge_{\mathcal{L}(1)}^3 (M \wedge B \wedge N).
\]

We can simplify the above coequalizer diagram to

\[
\mathcal{L}(5)_+ \wedge_{\mathcal{L}(1)}^5 (M \wedge B \wedge B \wedge B \wedge N) \quad \Downarrow \\
\mathcal{L}(3)_+ \wedge_{\mathcal{L}(1)}^3 (M \wedge B \wedge N)
\]

using the categorical epimorphism

\[
(\mathcal{L}(3)_+ \wedge_{\mathcal{L}(1)} B) \wedge (\mathcal{L}(2)_+ \wedge_{\mathcal{L}(1)} B) \wedge (\mathcal{L}(2)_+ \wedge_{\mathcal{L}(1)} B) \wedge M \wedge N \\
\rightarrow \mathcal{L}(3)_+ \wedge_{\mathcal{L}(1)}^3 (\mathcal{L}(2)_+ \wedge_{\mathcal{L}(1)} B) \wedge B \wedge (\mathcal{L}(2)_+ \wedge_{\mathcal{L}(1)} B)) \wedge M \wedge N \\
\cong \mathcal{L}(5)_+ \wedge_{\mathcal{L}(1)}^5 (M \wedge B \wedge B \wedge B \wedge N).
\]

The latter coequalizer is easily seen (using Hopkins’ Lemma) to be \(M \wedge B \wedge B \wedge N\).

The following proposition gives the instance of Theorem 17.6 for the non-\(\Sigma\) \(A_\infty\) operad \(\overline{\mathcal{O}} = \mathcal{L}\).

Proposition 18.6. For any non-\(\Sigma\) \(\mathcal{L}\)-algebra \(B\), the maps \(\mathcal{L}(2)_+ \wedge B \to U^L_B B\), \(\mathcal{L}(2)_+ \wedge B \to U^L_B B\), and \(\mathcal{L}(3)_+ \wedge B \to \text{Bal}^L B\) are weak equivalences of orthogonal spectra.

Proof. It suffices to check that these maps are weak equivalences after applying \(J\). Using (18.5), each map is an instance of the map

\[
\mathcal{L}(n)_+ \wedge_{\mathcal{L}(1)} \mathcal{S} \cong (\mathcal{L}(n) \times_{\mathcal{L}(1)} \mathcal{L}(0))_+ \wedge \mathcal{S} \to \mathcal{L}(n-1)_+ \wedge \mathcal{S}.
\]

This map is a weak equivalence; see [10, XI.2.2].

The operad \(\mathcal{L} \times \overline{\mathcal{C}}_1\). This operad combines the features of the previous two cases. See the case of \(\overline{\mathcal{C}}_1\) for the definition of \(D, D',\) and \(C\).

Proposition 18.7. The underlying orthogonal spectrum of \(U^L_{\mathcal{L} \times \overline{\mathcal{C}}_1} B\) is

\[
((\mathcal{L}(1) \times \overline{\mathcal{C}}_1)_+ \wedge \mathcal{S}) \cup ((\mathcal{L}(2)_+ \wedge_{\mathcal{L}(1)} \mathcal{S}) \wedge (\mathcal{L}(2)_+ \wedge \mathcal{S})).
\]
The underlying orthogonal spectrum of $U^L_{\mathcal{C}^1} B$ is
\[((L(1) \times \mathcal{C}_1)_{+} \wedge S) \cup ((L(2) \times D')_{+} \wedge \mathcal{L}_{(1)} S) \]
\[((L(2) \times \mathcal{C}_1(2))_{+} \wedge S) \cup ((L(3) \times C)_{+} \wedge \mathcal{L}(1) B). \]

The underlying orthogonal spectrum of $\text{Bal}^L_{\mathcal{C}^1} B$ is
\[((L(2) \times \mathcal{C}_1(2))_{+} \wedge S) \cup ((L(3) \times C)_{+} \wedge \mathcal{L}(1) B). \]

The proof is to use Hopkins’ Lemma as in the previous subsection and the homeomorphisms
\[D \times \mathcal{C}_1(n) \xrightarrow{\cong} \mathcal{C}_1(n+1), \quad D' \times \mathcal{C}_1(n) \xrightarrow{\cong} \mathcal{C}_1(n+1), \quad \text{and} \quad C \times \mathcal{C}_1(n) \xrightarrow{\cong} \mathcal{C}_1(n+2) \]
(for $n > 0$) induced by the maps $D \to \mathcal{C}_1(2)$, $D' \to \mathcal{C}_1(2)$, and $C \to \mathcal{C}_1(3)$ and the operadic products \circ_1, \circ_2, and \circ_3, respectively, as in the first subsection. The unit and product on this model of $U^L_{\mathcal{C}^1} B$ and $U^L_{\mathcal{C}^1} B$ are the evident generalization of the structure described in the previous two subsections, as is the action on $\text{Bal}^L_{\mathcal{C}^1} B$.

The following proposition is the instance of Theorem 17.6 for the operad $\mathcal{C} = \mathcal{L} \times \mathcal{C}_1$.

Proposition 18.8. The maps
\[(L(2) \times \mathcal{C}_1(2))_{+} \wedge B \to U^L_{\mathcal{C}^1} B, \quad (L(2) \times \mathcal{C}_1(2))_{+} \wedge B \to U^L_{\mathcal{C}^1} B, \quad \text{and} \quad (L(3) \times \mathcal{C}_1(3))_{+} \wedge B \to \text{Bal}^L_{\mathcal{C}^1} B \]
are weak equivalences of orthogonal spectra.

Proof. We treat the case of $\text{Bal}^L_{\mathcal{C}^1} B$; the remaining cases are similar. The left action of $\mathcal{L}(1)$ on $\mathcal{L}(n) \times \mathcal{C}_1(n)$ (in $\mathcal{C}_1(n)$) and the models given in the previous proposition allow us to view $\text{Bal}^L_{\mathcal{C}^1}$ as $\mathcal{L}(1)$-spectra; we can then apply the functor J to convert to EKMM S-modules (in orthogonal spectra). Applying J to the pushout
\[(18.9) \quad ((L(3) \times \mathcal{C}_1(2)) \wedge \mathcal{L}(1) S) \cup ((L(3) \times \mathcal{C}_1(3))_{+} \wedge \mathcal{L}(1) B) \]
is isomorphic to $J(\text{Bal}^L_{\mathcal{C}^1} B)$, and so suffices to show that the map from $L(3)_{+} \wedge B$ to (18.9) is a weak equivalence. Using the weak equivalence
\[L(3)_{+} \wedge B \longrightarrow L(3)_{+} \wedge \mathcal{L}(1) B \]
(see [10, XI.2.2]), it suffices to check that the inclusion of $(L(3) \times \mathcal{C}_1(3))_{+} \wedge \mathcal{L}(1) B$ in the pushout (18.9) is a weak equivalence. From here the proof is identical to the proof of Proposition 18.2 using $L(3)_{+} \wedge \mathcal{L}(1) B$ in place of B and $L(3)_{+} \wedge \mathcal{L}(1) S$ in place of S. \qed

The operad $\mathcal{L} \times \mathcal{O}^F_{1}$. The operad \mathcal{O}^F_{1} satisfies $\mathcal{O}^F_{1}(n) = \mathcal{O}^F_{1}(1)^n$, the operad built from the monoid $\mathcal{O}^F_{1}(1)$ using the diagonal multiplication. In any reasonable symmetric monoidal category tensored over spaces, a non-Σ \mathcal{O}^F_{1}-algebra A is just an associative monoid object together with a left action of the monoid $\mathcal{O}^F_{1}(1)$ on its underlying object (with no compatibility required). Likewise a left or right A-module M over \mathcal{O}^F_{1} is just a left or right A-module (in the usual sense) together with a left action of $\mathcal{O}^F_{1}(1)$ (with no compatibility required). In particular, we see that the enveloping algebras of A are just (left) $\mathcal{O}^F_{1}(1)_{+} \wedge A$ and (right) $\mathcal{O}^F_{1}(1)^{op} \wedge A$, where we have written $(-)_{+} \wedge (-)$ for the tensor with a space. (Recall that our convention is for the right enveloping algebra to act on the right; the alternative convention of having it act on the left would yield $\mathcal{O}^F_{1}(1)_{+} \wedge A^{op}$ for the right enveloping algebra.)
Working in the weak symmetric monoidal category of $L(1)$-spectra in orthogonal spectra, we obtain the following analogous statement.

Proposition 18.10. For any non-$\Sigma (L \times O_{1})$-algebra B, we have natural isomorphisms of associative ring orthogonal spectra

$$U_{L}^{L \times O_{1}} B \cong O_{1}^{1} \wedge U_{L}^{L} B$$

$$U_{R}^{L \times O_{1}} B \cong O_{1}^{1} \text{op} \wedge U_{R}^{L} B$$

and an isomorphism of bimodules

$$\text{Bal}_{L \times O_{1}} B \cong (O_{1}^{1} \times O_{1}^{1} \text{op}) \wedge \text{Bal}_{L} B$$

(where the action has both factors of O_{1}^{1} in Bal always left for the multiplication on O_{1}^{1}).

The instance of Theorem 17.6 for $L \times O_{1}$ now follows from Proposition 18.6.

19. A topologically enriched lax symmetric monoidal fibrant replacement functor for equivariant orthogonal spectra (Proof of Lemma 2.1)

In this section we construct a topologically enriched lax symmetric monoidal fibrant replacement functor for the positive stable model category of orthogonal G-spectra. We use an equivariant version of the construction of Kro [20, 3.3].

Before beginning the construction and the argument, it is useful to be slightly more precise about the homotopy groups of a orthogonal G-spectrum. Recall that a complete G-universe is an infinite dimensional G-inner product space containing a representative of each finite dimensional G-representation. We use the notation $V < U$ to denote that V is a finite dimensional G-linear subspace of U. Given a complete G-universe U, $V < U$, and W an arbitrary finite dimensional G-inner product space, for $H < G$ and X a orthogonal G-spectrum, define

$$\pi_{W,V < U}^{H} X = \text{colim}_{V < Z < U} [S^{W \oplus (Z - V)}, X(Z)]^{H},$$

where $[-,-]^{H}$ denotes the set of homotopy classes of maps of based H-spaces and $Z - V$ denotes the orthogonal complement of V in Z. The following facts are well-established.

(i) $\pi_{W,V < U}^{H}$ has the natural structure of an abelian group.

(ii) If U' is a complete G-universe and $f: U \to U'$ is a G-equivariant linear isometry (not necessarily isomorphism), then the induced map $\pi_{W,V < U}^{H} X \to \pi_{W,f(V) < U'}^{H} X$ is an isomorphism.

(iii) For any finite-dimensional G-inner product space W', the map $\pi_{W,V < U}^{H} X \to \pi_{W \oplus W', V \oplus W' < U \oplus W'}^{H} X$ (induced by $(-) \wedge S^{W'}$ and the structure map on X) is an isomorphism.

(iv) A map $X \to Y$ of orthogonal G-spectra is a stable equivalence if and only if the induced maps on $\pi_{W,V < U}^{H}$ are isomorphisms for all $H, V < U, W$.

Indeed, $\pi_{W,V < U}^{H} X$ is a specific model for the $RO(G)$-graded homotopy group $\pi_{[W] \to [V]}^{H} X$; (ii) and (iii) are some minimal invariance properties easily proved by comparison of colimit arguments, while (iv) follows from the fact that a map in the stable category induces an isomorphism on integer-graded homotopy groups if and only if it induces
an isomorphism on \(RO(G) \)-graded homotopy groups. Another useful observation is that when \(U \) is a complete \(G \)-universe and \(W \) is any non-trivial finite dimensional \(G \)-inner product space, \(U \otimes W \) is also a complete \(G \)-universe [23, IV.3.9].

Define

\[
(R_G X)(W) = \text{hocolim}_{V < U} \Omega^V \otimes W X((R \oplus V) \otimes W)
\]

where for \(V < V' \) the map in the hocolim system is induced by the structure map for \(X \)

\[
X((R \oplus V) \otimes W) \wedge S^{(V' - V) \otimes W} \to X((R \oplus V) \oplus ((V' - V) \otimes W)) \cong X((R \oplus V') \otimes W)
\]

and the canonical isomorphism \(V \oplus (V' - V) \cong V' \). The structure map

\[
(R_G X)(W) \wedge S^{W'} \to (R_G X)(W \oplus W')
\]

is induced at the \(V \) spot in the hocolim

\[
\Omega^V \otimes W X((R \oplus V) \otimes W) \wedge S^{W'} \to \Omega^V \otimes (W \oplus W') X((R \oplus V) \otimes (W \oplus W'))
\]

as the adjoint under the \((\Sigma^V \otimes W, \Omega^V \otimes W')\)-adjunction to the map

\[
X((R \oplus V) \otimes W) \wedge S^{W'} \wedge S^{V' \otimes W'} \cong X((R \oplus V) \otimes W) \wedge S^{(R \oplus V') \otimes W'}
\]

\[
\to X((R \oplus V) \otimes W \oplus (R \oplus V) \otimes W') \cong X((R \oplus V) \otimes (W \oplus W'))
\]

coming from the structure map for \(X \). The check that the structure map is well-defined works exactly as in the non-equivariant case, and this together with the evident \(G \) and \(\mathcal{F}(W, W') \)-action maps make \(R_G \) into an endofunctor on orthogonal \(G \)-spectra. The inclusion of \(X(W) \) as \(\Omega^0 \otimes W X((R \oplus 0) \otimes W) \) induces a natural transformation \(\text{Id} \to R_G \).

Proposition 19.1. For any orthogonal \(G \)-spectrum \(X \), \(R_G X \) is a positive \(G \)-\(\Omega \)-spectrum and \(X \to R_G X \) is a stable equivalence.

Proof. The formula for \((R_G X)(W) \) gives a canonical isomorphism

\[
\pi_n^H((R_G X)(W)) \cong \text{colim}_{V < U} [S^{R^n \oplus (V \otimes W)}, X((R \oplus V) \otimes W)]^H
\]

\[
\cong \text{colim}_{R \otimes W < Z < (R \oplus U) \otimes W} [S^{R^n \oplus (Z - R \otimes W)}, X(Z)]^H
\]

with the second isomorphism by cofinality. This gives a canonical isomorphism

\[
\pi_n^H(R_G X(W)) \cong \pi_n^H_{R \otimes W < (R \oplus U) \otimes W} X
\]

when \(W \) is non-trivial (we have not defined the righthand side when \(W \) is trivial). Similarly, we have a canonical isomorphism

\[
\pi_n^H(\Omega^W((R_G X(W \oplus W')))) \cong \pi_n^H_{R \otimes W', R \otimes (W \oplus W') < (R \otimes U) \otimes (W \oplus W')} X
\]

and the adjoint structure map \(R_G X(W) \to \Omega^W((R_G X(W \oplus W')) \) is a weak equivalence whenever \(W \) is nontrivial as an instance of properties (ii) and (iii) of homotopy groups listed above. It follows from this calculation (and property (iv) of homotopy groups above) that \(R_G \) takes stable equivalences of orthogonal \(G \)-spectra to positive level equivalences. In particular, to prove that the natural transformation \(\text{Id} \to R_G \) is a stable equivalence, it suffices to check that it is a positive level equivalence on a positive \(G \)-\(\Omega \)-spectrum \(X \). In this case, for \(W \) nontrivial, \(\pi_n^H(X(W)) \to \pi_n^H_{R \otimes W < U} X \) is an isomorphism, and we can identify the induced map on homotopy groups \(\pi_n^H(X(W)) \to \pi_n^H(R_G X(W)) \) as an isomorphism once again using property (ii) of homotopy groups above. \(\Box\)
The functor R_G is clearly continuous on mapping spaces. Thus, to complete the proof of Lemma 2.1, we need to construct the lax symmetric monoidal structure on R_G and prove that $\text{Id} \to R_G$ is a symmetric monoidal transformation. This works essentially just as in the non-equivariant case, using internal sum $+$ of finite dimensional subspaces of U in place of max of natural numbers. (Of course, $\mathbb{R}^k + \mathbb{R}^\ell < \mathbb{R}^\infty$ is $\mathbb{R}^{\max(k,\ell)} < \mathbb{R}^\infty$.) Denoting by \mathcal{U} the partially ordered set of $V < U$, $+$ defines a functor $\mathcal{U} \times \mathcal{U} \to \mathcal{U}$ that is strictly symmetric $(V + V' = V' + V)$ and strictly associative $((V + V') + V'' = V + (V' + V''))$. For specified orthogonal G-spectra X and X' and finite dimensional G-inner product spaces W and W', we have a natural transformation

$$\Omega^{V\otimes W}X((\mathbb{R} \oplus V) \otimes W) \wedge \Omega^{V'\otimes W'}X((\mathbb{R} \oplus V') \otimes W')$$

subordinate to $+$ and inducing a map of based G-spaces

$$R_G(X(W)) \wedge R_G(X'(W')) \to (R_G(X \wedge X'))(W \oplus W').$$

The check that this assembles to a natural transformation

$$R_GX \wedge R_GX' \to R_G(X \wedge X')$$

is now straightforward and essentially the same as in the non-equivariant case, as are the remaining checks of the associativity and symmetry properties and the check of lax symmetric monoidality of the natural transformation $\text{Id} \to R_G$.

REFERENCES

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF TEXAS, AUSTIN, TX 78712

E-mail address: blumberg@math.utexas.edu

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, IN 47405

E-mail address: mandell@indiana.edu