Algebraic Models for Homotopy Types I
Models for Homotopy Theory

Michael A. Mandell
Indiana University
Young Topologists Meeting 2013

July 8, 2013
Outline

- Monday: Models in Homotopy Theory
- Tuesday: Algebraic Models in Rational Homotopy Theory
- Thursday: Algebraic Models in p-adic Homotopy Theory
- Friday: Algebraic Models for Integral Homotopy Types

Web page with slides (available after the talks), exercises, and reference links: http://mypage.iu.edu/~mmandell/
Homotopy Theory

Let C be a category. Let W be a subcategory, the weak equivalences. The homotopy category Ho_C is the category $C[W^{-1}]$ obtained by formally inverting the weak equivalences.

Issues
- Are the Hom sets small?
- Is there a reasonable way of describing the Hom sets?
- What kinds of constructions can you do in Ho_C?
Homotopy Theory

Definition

Let \mathcal{C} be a category.

Let \mathcal{W} be a subcategory, the weak equivalences.

The homotopy category $\text{Ho}\mathcal{C}$ is the category $\mathcal{C}[\mathcal{W}^{-1}]$ obtained by formally inverting the weak equivalences.
Definition

Let \mathcal{C} be a category.
Let \mathcal{W} be a subcategory, the weak equivalences.

The homotopy category $\text{Ho} \mathcal{C}$ is the category $\mathcal{C}[\mathcal{W}^{-1}]$ obtained by formally inverting the weak equivalences.
Definition

Let \(C \) be a category.

Let \(\mathcal{W} \) be a subcategory, the weak equivalences.

The homotopy category \(\text{Ho} \ C \) is the category \(C[\mathcal{W}^{-1}] \) obtained by formally inverting the weak equivalences.
Definition

Let \mathcal{C} be a category.
Let \mathcal{W} be a subcategory, the \textit{weak equivalences}.

The homotopy category $\text{Ho} \mathcal{C}$ is the category $\mathcal{C}[\mathcal{W}^{-1}]$ obtained by formally inverting the weak equivalences.

Issues
Definition

Let \mathcal{C} be a category.
Let \mathcal{W} be a subcategory, the weak equivalences.

The homotopy category $\text{Ho}\mathcal{C}$ is the category $\mathcal{C}[\mathcal{W}^{-1}]$ obtained by formally inverting the weak equivalences.

Issues

- Are the Hom sets small?
Homotopy Theory

Definition

Let \mathcal{C} be a category.

Let \mathcal{W} be a subcategory, the weak equivalences.

The homotopy category $\text{Ho}\mathcal{C}$ is the category $\mathcal{C}[\mathcal{W}^{-1}]$ obtained by formally inverting the weak equivalences.

Issues

- Are the Hom sets small?
- Is there a reasonable way of describing the Hom sets?
Homotopy Theory

Definition

Let C be a category.
Let \mathcal{W} be a subcategory, the weak equivalences.

The homotopy category $\text{Ho } C$ is the category $C[\mathcal{W}^{-1}]$ obtained by formally inverting the weak equivalences.

Issues

- Are the Hom sets small?
- Is there a reasonable way of describing the Hom sets?
- What kinds of constructions can you do in $\text{Ho } C$?
Language of Model Categories

Often in addition to weak equivalences, we have other interesting classes of maps that we can use to build homotopy invariant constructions

Quillen
Language of Model Categories

Often in addition to weak equivalences, we have other interesting classes of maps that we can use to build homotopy invariant constructions like homotopy colimits.

- **Cofibrations**
Often in addition to weak equivalences, we have other interesting classes of maps that we can use to build homotopy invariant constructions like homotopy colimits and homotopy limits.

- Cofibrations
- Fibrations

\[\text{homotopy pullback} \]
Often in addition to weak equivalences, we have other interesting classes of maps that we can use to build homotopy invariant constructions like homotopy colimits and homotopy limits

- Cofibrations
- Fibrations

Quillen’s theory of **model categories** axiomatizes properties of these.
Language of Model Categories

Often in addition to weak equivalences, we have other interesting classes of maps that we can use to build homotopy invariant constructions like homotopy colimits and homotopy limits.

- Cofibrations
- Fibrations

Quillen’s theory of model categories axiomatizes properties of these.

Additional terminology

- Acyclic cofibration = cofibration + weak equivalence
- Acyclic fibration = fibration + weak equivalence
Often in addition to weak equivalences, we have other interesting classes of maps that we can use to build homotopy invariant constructions like homotopy colimits and homotopy limits.

- Cofibrations
- Fibrations

Quillen’s theory of **model categories** axiomatizes properties of these.

Additional terminology

- Acyclic cofibration = cofibration + weak equivalence
- Acyclic fibration = fibration + weak equivalence
- Cofibrant / cofibrant object = initial map is a cofibration
- Fibrant / fibrant object = final map is a fibration
Example: Chain Complexes

Let \mathcal{C} be the category of bounded below chain complexes
Assume enough projectives
Example: Chain Complexes

Let \mathcal{C} be the category of bounded below chain complexes
Assume enough projectives

Cofibrant = complex that is degreewise projective
Example: Chain Complexes

Let \mathcal{C} be the category of bounded below chain complexes
Assume enough projectives

Cofibrant = complex that is degreewise projective
Cofibration = injection whose coker is cofibrant
Example: Chain Complexes

Let \mathcal{C} be the category of bounded below chain complexes
Assume enough projectives

Cofibrant = complex that is degreewise projective
Cofibration = injection whose coker is cofibrant
Fibration = surjection

Theorem (The Fundamental Lemma of Homological Algebra)

Let $P_* \text{ be cofibrant, and let } R_* \to A \text{ be a resolution.}$
$(R_* \to A \text{ is a weak equivalence and } R_* \text{ is in non-negative degrees}).$
Example: Chain Complexes

Let C be the category of bounded below chain complexes
Assume enough projectives

Cofibrant = complex that is degreewise projective
Cofibration = injection whose coker is cofibrant
Fibration = surjection

Theorem (The Fundamental Lemma of Homological Algebra)

Let P_\ast be cofibrant, and let $R_\ast \to A$ be a resolution.
($R_\ast \to A$ is a weak equivalence and R_\ast is in non-negative degrees).

Then there exists a map $P_\ast \to R_\ast$ over A and any two are chain homotopy equivalent.
Example: Chain Complexes

Let \mathcal{C} be the category of bounded below chain complexes
Assume enough projectives

Cofibrant = complex that is degreewise projective
Cofibration = injection whose coker is cofibrant
Fibration = surjection

Theorem (The Fundamental Lemma of Homological Algebra)

Let $P_* \to A$ be a resolution.
($R_* \to A$ is a weak equivalence and R_* is in non-negative degrees).

Then there exists a map $P_* \to R_*$ over A and any two are chain homotopy equivalent.

\[
\begin{array}{ccc}
R_* & \simeq & A \\
\downarrow & & \downarrow \\
\cdots & \uparrow & \\
P_* & \longrightarrow & A
\end{array}
\]
Example: Chain Complexes

Let C be the category of bounded below chain complexes
Assume enough projectives

Cofibrant = complex that is degreewise projective
Cofibration = injection whose coker is cofibrant
Fibration = surjection

Theorem (The Fundamental Lemma of Homological Algebra)

Let P_\ast be cofibrant, and let $R_\ast \to A$ be a resolution.
($R_\ast \to A$ is a weak equivalence and R_\ast is in non-negative degrees).

Then there exists a map $P_\ast \to R_\ast$ over A and any two are chain homotopy equivalent.
Example: Spaces

\[\text{Cofibration} = \text{relative cell complex. Cofibrant} = \text{cell complex} \]
Example: Spaces

Cofibration = relative cell complex. Cofibrant = cell complex
Fibration = Serre fibration. Fibrant = everything.

\[
\begin{array}{ccc}
D & \rightarrow & X \\
\downarrow & & \downarrow \\
D \times I & \rightarrow & Y
\end{array}
\]

Theorem (Whitehead Theorem)
If $X \rightarrow Y$ is a weak equivalence and B is a cell complex, then any map $B \rightarrow X$ lifts up to homotopy to a map $B \rightarrow X$ and any two lifts are homotopic.

Corollary
If A and B are cell complexes then maps in the set of maps in the homotopy category from A to B is just the set of homotopy classes of maps from A to B.

$\text{Ho} \mathcal{T}(A, B) = \pi_0(B^A)$
Example: Spaces

Cofibration = relative cell complex. Cofibrant = cell complex
Fibration = Serre fibration. Fibrant = everything.

\[
\text{weak equivalence} = \text{iso at the level of } \pi_0
\]

\[
D \to X \\
\downarrow \\
D \times I \to Y
\]

Theorem (Whitehead Theorem)

If \(X \to Y \) is a weak equivalence and \(B \) is a cell complex, then any map \(B \to \) lifts up to homotopy to a map \(B \to X \) and any two lifts are homotopic.

\[
B \Box I \to X \\
\downarrow \\
B \Box I \to Y
\]
Example: Spaces

Cofibration = relative cell complex. Cofibrant = cell complex

Fibration = Serre fibration. Fibrant = everything.

\[
\begin{array}{ccc}
D & \longrightarrow & X \\
\downarrow & & \downarrow \\
D \times I & \longrightarrow & Y
\end{array}
\]

Theorem (Whitehead Theorem)

If \(X \rightarrow Y\) is a weak equivalence and \(B\) is a cell complex, then any map \(B \rightarrow X\) lifts up to homotopy to a map \(B \rightarrow X\) and any two lifts are homotopic.

Corollary

If \(A\) and \(B\) are cell complexes then the set of maps in the homotopy category from \(A\) to \(B\) is just the set of homotopy classes of maps from \(A\) to \(B\). \(\text{Ho} \mathcal{T}(A, B) = \pi_0(B^A)\)
Example: Simplicial Sets

Geometric n-simplex = \{ $t_0 v_0 + \cdots + t_n v_n$ | $t_i \geq 0$, $\sum t_i = 1$ \}

Vertexes are ordered, general position.

Simplicial set: Formed from simplexes by gluing faces along ordered linear maps.

Data = Sets X_n of (non-degenerate) n-simplices plus gluing data for each face.

If we include “degenerate simplices” gluing data consists of maps $\partial_i: X_n \to X_{n-1}$ for $i = 0, \ldots, n$ (one for each face).

$X_0 = X_0 \quad X_1 = X_1 \amalg X_0 \quad X_2 = X_2 \amalg (X_1 \amalg X_1) \amalg X_0 \quad \cdots$

But then also need maps $s_i: X_{n-1} \to X_n$ to pick out degenerate simplices.
Example: Simplicial Sets (Review of Simplicial Sets)

Geometric n-simplex = \{ $t_0 v_0 + \cdots + t_n v_n$ | $t_i \geq 0$, $\sum t_i = 1$ \}

Vertexes are ordered, general position.

Simplicial set: Formed from simplexes by gluing faces along ordered linear maps.

Data = Sets X_n of (non-degenerate) n-simplices plus gluing data for each face.

If we include “degenerate simplices” gluing data consists of maps $\partial_i: X_n \to X_{n-1}$ for $i = 0, \ldots, n$ (one for each face).

$X_0 = X_0 \amalg X_1 \amalg \cdots$

But then also need maps $s_i: X_{n-1} \to X_n$ to pick out degenerate simplices.
Example: Simplicial Sets (Review of Simplicial Sets)

Geometric n-simplex = \{ $t_0v_0 + \cdots + t_nv_n$ | $t_i \geq 0$, $\Sigma t_i = 1$ \}
Vertexes are ordered, general position.
Example: Simplicial Sets (Review of Simplicial Sets)

Geometric n-simplex $= \{ t_0v_0 + \cdots + t_nv_n \mid t_i \geq 0, \Sigma t_i = 1 \}$
Vertexes are ordered, general position.

Simplicial set: Formed from simplexes by gluing faces along ordered linear maps.
Example: Simplicial Sets (Review of Simplicial Sets)

Geometric n-simplex = \(\{ t_0v_0 + \cdots + t_nv_n \mid t_i \geq 0, \sum t_i = 1 \} \)
Vertexes are ordered, general position.

Simplicial set: Formed from simplexes by gluing faces along ordered linear maps.
Data = Sets \bar{X}_n of (non-degenerate) n-simplices plus gluing data for each face
Example: Simplicial Sets (Review of Simplicial Sets)

Geometric n-simplex = $\{ t_0 v_0 + \cdots + t_n v_n \mid t_i \geq 0, \Sigma t_i = 1 \}$

Vertexes are ordered, general position.

Simplicial set: Formed from simplexes by gluing faces along ordered linear maps.

Data = Sets \overline{X}_n of (non-degenerate) n-simplices plus gluing data for each face

If we include “degenerate simplices” gluing data consists of maps $\partial_i : X_n \to X_{n-1}$ for $i = 0, \ldots, n$ (one for each face)

$$X_0 = \overline{X}_0$$

$$X_1 = \overline{X}_1 \amalg \overline{X}_0$$

$$X_2 = \overline{X}_2 \amalg (\overline{X}_1 \amalg \overline{X}_1) \amalg \overline{X}_0$$

$$\cdots$$
Example: Simplicial Sets (Review of Simplicial Sets)

Geometric n-simplex = \(\{ t_0v_0 + \cdots + t_nv_n \mid t_i \geq 0, \sum t_i = 1 \} \)

Vertexes are ordered, general position.

Simplicial set: Formed from simplexes by gluing faces along ordered linear maps.

Data = Sets \overline{X}_n of (non-degenerate) n-simplices plus gluing data for each face

If we include “degenerate simplices” gluing data consists of maps $\partial_i : X_n \rightarrow X_{n-1}$ for $i = 0, \ldots, n$ (one for each face)

\[
\begin{align*}
X_0 &= \overline{X}_0 \\
X_1 &= \overline{X}_1 \amalg \overline{X}_0 \\
X_2 &= \overline{X}_2 \amalg (\overline{X}_1 \amalg \overline{X}_1) \amalg \overline{X}_0 \\
\cdots
\end{align*}
\]

But then also need maps $s_i : X_{n-1} \rightarrow X_n$ to pick out degenerate simplices.
Let $\Delta(m, n)$ be the set of ordered maps from $\{0, \ldots, m\}$ to $\{0, \ldots, n\}$.
Let $\Delta(m, n)$ be the set of ordered maps from \{0, \ldots, m\} to \{0, \ldots, n\}.

Definition

A simplicial set is a functor from Δ^{op} to sets.
Let $\Delta(m, n)$ be the set of ordered maps from \{0, \ldots, m\} to \{0, \ldots, n\}.

Definition

A simplicial set is a functor from Δ^{op} to sets.

Example

$\Delta^n = \Delta(\bullet, n)$
Let $\Delta(m, n)$ be the set of ordered maps from $\{0, \ldots, m\}$ to $\{0, \ldots, n\}$.

Definition

A simplicial set is a functor from Δ^{op} to sets.

Example

\[\Delta^n = \Delta(\bullet, n) \]
\[\Delta^m = \Delta(m, n) = \text{set of linear ordered maps from a geometric } m\text{-simplex to a geometric } n\text{-simplex.} \]
Let $\Delta(m, n)$ be the set of ordered maps from $\{0, \ldots, m\}$ to $\{0, \ldots, n\}$.

Definition

A simplicial set is a functor from Δ^{op} to sets.

Example

$\Delta^n_m = \Delta(\bullet, n)$

$\Delta^n_m = \Delta(m, n) =$ set of linear ordered maps from a geometric m-simplex to a geometric n-simplex.

$\text{Hom}(\Delta^m, \Delta^n) = \Delta(m, n)$
Let $\Delta(m, n)$ be the set of ordered maps from $\{0, \ldots, m\}$ to $\{0, \ldots, n\}$.

Definition

A simplicial set is a functor from Δ^{op} to sets.

Example

$\Delta^n = \Delta(\bullet, n)$

$\Delta^n_m = \Delta(m, n) =$ set of linear ordered maps from a geometric m-simplex to a geometric n-simplex.

$\text{Hom}(\Delta^m, \Delta^n) = \Delta(m, n)$

Example

$S_n X = T(\Delta^n, X)$
Let $\Delta(m, n)$ be the set of ordered maps from $\{0, \ldots, m\}$ to $\{0, \ldots, n\}$.

Definition

A simplicial set is a functor from Δ^{op} to sets.

Example

$\Delta^n = \Delta(\bullet, n)$

$\Delta^n_m = \Delta(m, n) =$ set of linear ordered maps from a geometric m-simplex to a geometric n-simplex.

$\text{Hom}(\Delta^m, \Delta^n) = \Delta(m, n)$

Example

$S_nX = T(\Delta^n, X)$

Adjunction $S(Z, S\bullet X) \cong T(|Z|, X)$.
Example: Simplicial Sets

Cofibration = injection. Cofibrant = everything.
Example: Simplicial Sets

Cofibration = injection. Cofibrant = everything.
Fibration = Kan fibration. Fibrant = Kan complex.

\[
\begin{array}{ccc}
\Lambda_i^n & \rightarrow & X \\
\downarrow & & \downarrow \\
\Delta^n & \rightarrow & Y
\end{array}
\]

(Example. \(S \cdot X\) is a Kan complex; if \(X \rightarrow Y\) is a Serre fibration, then \(S \cdot X \rightarrow S \cdot Y\) is a Kan fibration.)

Definition
A map of simplicial sets is a weak equivalence if it is a weak equivalence after geometric realization.

Theorem
A map of simplicial sets is a weak equivalence if and only if it induces a bijection on homotopy classes of maps into every Kan complex.
Example: Simplicial Sets

Cofibration = injection. Cofibrant = everything.
Fibration = Kan fibration. Fibrant = Kan complex.

(Example. \(S \cdot X \) is a Kan complex; if \(X \to Y \) is a Serre fibration, then \(S \cdot X \to S \cdot Y \) is a Kan fibration.)
Cofibration = injection. Cofibrant = everything.
Fibration = Kan fibration. Fibrant = Kan complex.

(Example. $S\bullet X$ is a Kan complex; if $X \rightarrow Y$ is a Serre fibration, then $S\bullet X \rightarrow S\bullet Y$ is a Kan fibration.)

Definition

A map of simplicial sets is a weak equivalence if it is a weak equivalence after geometric realization
Example: Simplicial Sets

Cofibration = injection. Cofibrant = everything.
Fibration = Kan fibration. Fibrant = Kan complex.

(Example. $S\cdot X$ is a Kan complex; if $X \to Y$ is a Serre fibration, then $S\cdot X \to S\cdot Y$ is a Kan fibration.)

Definition
A map of simplicial sets is a weak equivalence if it is a weak equivalence after geometric realization

Theorem
A map of simplicial sets is a weak equivalence if and only if it induces a bijection on homotopy classes of maps into every Kan complex.
A closed model category is a category \mathcal{C} with subcategories of weak equivalences, cofibrations, and fibrations such that:

- \mathcal{C} has all limits and colimits.
- The weak equivalences satisfy the 2-out-of-3 property.
- The weak equivalences, cofibrations, and fibrations are closed under retracts.
- The cofibrations satisfy the left lifting property with respect to the acyclic cofibrations and the fibrations satisfy the right lifting property with respect to the acyclic cofibrations.
- Every map factors as a cofibration followed by an acyclic fibration and as an acyclic cofibration followed by a fibration.
Closed Model Category

A closed model category is a category \mathcal{C} with subcategories of weak equivalences, cofibrations, and fibrations such that:

- \mathcal{C} has all limits and colimits
- \mathcal{C} satisfies the 2-out-of-3 property
- \mathcal{C} is closed under retracts
- Cofibrations satisfy the left lifting property with respect to the acyclic cofibrations and fibrations satisfy the right lifting property with respect to the acyclic cofibrations
- Every map factors as a cofibration followed by an acyclic fibration and as an acyclic cofibration followed by a fibration.
A closed model category is a category \mathcal{C} with subcategories of weak equivalences, cofibrations, and fibrations such that:

- \mathcal{C} has all limits and colimits
- The weak equivalences satisfy the 2-out-of-3 property

\[
\begin{array}{ccc}
X & \rightarrow & Y \\
\downarrow & & \downarrow \\
Z & \rightarrow & W
\end{array}
\]
A closed model category is a category \mathcal{C} with subcategories of weak equivalences, cofibrations, and fibrations such that:

- \mathcal{C} has all limits and colimits
- The weak equivalences satisfy the 2-out-of-3 property
- The weak equivalences, cofibrations, and fibrations are closed under retracts

\[\begin{array}{ccc}
X & \rightarrow & A \\
\downarrow & & \downarrow \\
Y & \rightarrow & B \\
\end{array} \]

\[\begin{array}{ccc}
& & X \\
\circlearrowleft & & \\
& & \end{array} \]
A closed model category is a category \(\mathcal{C} \) with subcategories of weak equivalences, cofibrations, and fibrations such that:

- \(\mathcal{C} \) has all limits and colimits
- The weak equivalences satisfy the 2-out-of-3 property
- The weak equivalences, cofibrations, and fibrations are closed under retracts
- The cofibrations satisfy the left lifting property with respect to the acyclic cofibrations and the fibrations satisfy the right lifting property with respect to the acyclic cofibrations.

Examples: All the examples above.
A closed model category is a category \mathcal{C} with subcategories of weak equivalences, cofibrations, and fibrations such that:

- \mathcal{C} has all limits and colimits
- The weak equivalences satisfy the 2-out-of-3 property
- The weak equivalences, cofibrations, and fibrations are closed under retracts
- The cofibrations satisfy the left lifting property with respect to the acyclic cofibrations and the fibrations satisfy the right lifting property with respect to the acyclic cofibrations
- Every map factors as a cofibration followed by an acyclic fibration and as an acyclic cofibration followed by a fibration.
A closed model category is a category \mathcal{C} with subcategories of weak equivalences, cofibrations, and fibrations such that:

- \mathcal{C} has all limits and colimits
- The weak equivalences satisfy the 2-out-of-3 property
- The weak equivalences, cofibrations, and fibrations are closed under retracts
- The cofibrations satisfy the left lifting property with respect to the acyclic cofibrations and the fibrations satisfy the right lifting property with respect to the acyclic cofibrations
- Every map factors as a cofibration followed by an acyclic fibration and as an acyclic cofibration followed by a fibration.

Examples: All the examples above.
Maps $f, g : X \to Y$ are (left) \textit{homotopic} means that there exists a diagram:

\[
\begin{array}{ccc}
X \sqcup X & \xrightarrow{f+g} & Y \\
\downarrow \sigma & & \uparrow \partial_0 + \partial_1 \\
X & \xleftarrow{\cong} & IX
\end{array}
\]
Maps $f, g: X \rightarrow Y$ are (left) homotopic means that there exists a diagram

\[
\begin{array}{ccc}
X \amalg X & \xrightarrow{f+g} & Y \\
\downarrow \pmb{\nabla} & & \uparrow \partial_0 + \partial_1 \\
X & \xleftarrow{\sigma} & IX
\end{array}
\]

Can assume without loss of generality that $\partial_0 + \partial_1: X \amalg X \rightarrow IX$ is a cofibration, and then

\[
\begin{array}{ccc}
X \amalg X & \xrightarrow{\partial_0 + \partial_1} & IX \\
\sigma & \cong & \leftarrow
\end{array}
\]

is called a cylinder object.
Homotopy Theory in Model Categories

Definition

Maps \(f, g : X \to Y \) are (left) homotopic means that there exists a diagram

\[
\begin{array}{ccc}
X \amalg X & \xrightarrow{f+g} & Y \\
\downarrow & & \downarrow \\
X & \xleftarrow{\sigma} & IX
\end{array}
\]

Can assume without loss of generality that \(\partial_0 + \partial_1 : X \amalg X \to IX \) is a cofibration, and then

\[
\begin{array}{ccc}
X \amalg X & \xrightarrow{\partial_0 + \partial_1} & IX \\
\downarrow & & \downarrow \\
X & \xleftarrow{\simeq} & X
\end{array}
\]

is called a cylinder object. If \(\sigma \) is also a fibration, then it is called a special cylinder object.
Fix your favorite special cylinder object.

\[X \amalg X \xrightarrow{\partial_0 + \partial_1} IX \xrightarrow{\sigma} X \]
Fix your favorite special cylinder object.

\[
\begin{array}{c}
X \amalg X \\
\xrightarrow{\partial_0 + \partial_1} \\
IX \xrightarrow{\sim} X
\end{array}
\]

Assume that \(Y \) is fibrant. Then maps \(f, g : X \to Y \) are homotopic if and only if they are homotopic for your favorite special cylinder object.
Homotopy Theory in Model Categories (cont.)

Fix your favorite special cylinder object.

\[X \amalg X \xrightarrow{\partial_0 + \partial_1} IX \xrightarrow{\sigma} X \]

Assume that \(Y \) is fibrant. Then maps \(f, g : X \rightarrow Y \) are homotopic if and only if they are homotopic for your favorite special cylinder object.

Theorem

Assume that \(X \) is cofibrant and \(Y \) is fibrant. Then the set of maps in the homotopy category from \(X \) to \(Y \) is the set of homotopy classes of maps from \(X \) to \(Y \).

\[\text{Ho} \mathcal{C}(X, Y) \cong \mathcal{C}(X, Y) / \text{homotopy} \]
Homotopy Theory in Model Categories (cont.)

Fix your favorite special cylinder object.

\[X \sqcup X \xrightarrow{\partial_0 + \partial_1} I X \xrightarrow{\sigma} X \]

Assume that \(Y \) is fibrant. Then maps \(f, g : X \rightarrow Y \) are homotopic if and only if they are homotopic for your favorite special cylinder object.

Theorem

Assume that \(X \) is cofibrant and \(Y \) is fibrant. Then the set of maps in the homotopy category from \(X \) to \(Y \) is the set of homotopy classes of maps from \(X \) to \(Y \).

\[\text{Ho} \mathcal{C}(X, Y) \cong \mathcal{C}(X, Y)/\text{homotopy} \]

In general: \(\text{Ho} \mathcal{C}(X, Y) \cong \text{Ho}(QX, RY) \) where \(QX \xrightarrow{\sim} X \) and \(Y \xrightarrow{\sim} RY \).
Derived Functors

Basic Problem

If F does not factor through $\text{Ho} \, C$, can we find the “closest” one that does?

$C \xrightarrow{F} D$
Basic Problem

If F does not factor through $\text{Ho } C$, can we find the “closest” one that does?

- **Left derived functor** is the closest from the left: Final natural transformation $L F \circ \gamma \rightarrow F$

- **Right derived functor** is the closest from the right: Initial natural transformation $F \rightarrow R F \circ \gamma$
Derived Functors

Basic Problem

\[C \xrightarrow{F} D \]
\[\gamma \downarrow \quad \gamma \downarrow \]
\[Ho C \quad Ho C \]

If \(F \) does not factor through \(Ho C \), can we find the “closest” one that does?

Left derived functor is the closest from the left: Final natural transformation \(LF \circ \gamma \rightarrow F \)

Right derived functor is the closest from the right: Initial natural transformation \(F \rightarrow RF \circ \gamma \)

Theorem

If \(F \) sends weak equivalences between cofibrant objects to isomorphisms, then the left derived functor exists and \(LF(X) = F(QX) \) for \(QX \xrightarrow{\sim} X \) a cofibrant approximation.
Example: Derived functors of an additive functor

Let $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ be an additive functor between abelian categories. Assume \mathcal{A} has enough projectives.

Consider $F: \text{Ch}^+ (\mathcal{A}) \xrightarrow{\Phi^{-}} \text{Ch}^+ (\mathcal{B}) \rightarrow \text{Ho} (\text{Ch}^+ (\mathcal{B}))$.

Cofibrant objects = complexes of projectives. A weak equivalence between cofibrant objects is a chain homotopy equivalence. Thus, F sends weak equivalences between cofibrant objects to isomorphisms.

For $A \in \mathcal{A}$, $LF(A) = \Phi (P^*)$ where $P^* \to A$ is a projective resolution.

Then $H^n (LF(A)) = L^n \Phi (A)$.

Example: Derived functors of an additive functor

Let $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ be an additive functor between abelian categories. Assume \mathcal{A} has enough projectives.

Consider $F: \text{Ch}^+(\mathcal{A}) \xrightarrow{\Phi} \text{Ch}^+(\mathcal{B}) \rightarrow \text{Ho}(\text{Ch}^+(\mathcal{B}))$.
Example: Derived functors of an additive functor

Let $\Phi: A \to B$ be an additive functor between abelian categories. Assume A has enough projectives.

Consider $F: Ch^+(A) \xrightarrow{\Phi} Ch^+(B) \to Ho(Ch^+(B))$.

Cofibrant objects = complexes of projectives.
Example: Derived functors of an additive functor

Let $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ be an additive functor between abelian categories. Assume \mathcal{A} has enough projectives.

Consider $F: Ch^+(\mathcal{A}) \xrightarrow{\Phi} Ch^+(\mathcal{B}) \rightarrow Ho(Ch^+(\mathcal{B}))$.

Cofibrant objects = complexes of projectives.

A weak equivalence between cofibrant objects is a chain homotopy equivalence.

\[LF(A) = \Phi(P^\ast) \] where $P^\ast \rightarrow A$ is a projective resolution.

\[H^n(LF(A)) = L^n\Phi(A) \]
Example: Derived functors of an additive functor

Let $\Phi: \mathcal{A} \to \mathcal{B}$ be an additive functor between abelian categories. Assume \mathcal{A} has enough projectives.

Consider $F: Ch^+(\mathcal{A}) \xrightarrow{\Phi} Ch^+(\mathcal{B}) \to Ho(Ch^+(\mathcal{B}))$.

Cofibrant objects = complexes of projectives.

A weak equivalence between cofibrant objects is a chain homotopy equivalence. Thus, F sends weak equivalences between cofibrant objects to isomorphisms.
Example: Derived functors of an additive functor

Let $\Phi: \mathcal{A} \to \mathcal{B}$ be an additive functor between abelian categories. Assume \mathcal{A} has enough projectives.

Consider $F: Ch^+(\mathcal{A}) \xrightarrow{\Phi} Ch^+(\mathcal{B}) \to Ho(Ch^+(\mathcal{B}))$.

Cofibrant objects = complexes of projectives.

A weak equivalence between cofibrant objects is a chain homotopy equivalence. Thus, F sends weak equivalences between cofibrant objects to isomorphisms.

For A in \mathcal{A}, $LF(A) = \Phi(P_\ast)$ where $P_\ast \to A$ is a projective resolution.
Example: Derived functors of an additive functor

Let $\Phi: \mathcal{A} \to \mathcal{B}$ be an additive functor between abelian categories. Assume \mathcal{A} has enough projectives.

Consider $F: Ch^+(\mathcal{A}) \xrightarrow{\Phi} Ch^+(\mathcal{B}) \to Ho(Ch^+(\mathcal{B}))$.

Cofibrant objects = complexes of projectives.

A weak equivalence between cofibrant objects is a chain homotopy equivalence. Thus, F sends weak equivalences between cofibrant objects to isomorphisms.

For A in \mathcal{A}, $LF(A) = \Phi(P_\ast)$ where $P_\ast \to A$ is a projective resolution.

Then $H_n(LF(A)) = L^n\Phi(A)$.

M.A. Mandell (IU)
Models for Homotopy Theory
July 2013
Quillen Adjunctions and Quillen Equivalences

Definition

Let \mathcal{C} and \mathcal{D} be model categories and $F : \mathcal{C} \rightleftarrows \mathcal{D} : G$ an adjunction $\mathcal{D}(FX, Y) \cong \mathcal{C}(X, GY)$. The adjunction F, G is a Quillen adjunction if one of the following equivalent conditions hold:

- F preserves cofibrations and G preserves fibrations
- F preserves cofibrations and acyclic cofibrations
- G preserves fibrations and acyclic fibrations.

It is a Quillen equivalence if for any cofibrant X in \mathcal{C} and any fibrant Y in \mathcal{D}, a map $FX \to Y$ is a weak equivalence if and only if the adjoint map $X \to GY$ is a weak equivalence.

Theorem

If F, G is a Quillen adjunction, then the derived functors LF and RG exist and are adjoint functors $Ho \mathcal{D}(X, GY) \cong Ho \mathcal{C}(LFX, Y)$. The Quillen adjunction is a Quillen equivalence if and only if the derived adjunction on homotopy categories is an equivalence.
Quillen Adjunctions and Quillen Equivalences

Definition

Let \mathcal{C} and \mathcal{D} be model categories and $F: \mathcal{C} \leftrightarrow \mathcal{D}: G$ an adjunction $\mathcal{D}(FX, Y) \cong \mathcal{C}(X, GY)$. The adjunction F, G is a **Quillen adjunction** if one of the following equivalent conditions hold:

- F preserves cofibrations and G preserves fibrations
- F preserves cofibrations and acyclic cofibrations
- G preserves fibrations and acyclic fibrations.

It is a **Quillen equivalence** if for any cofibrant X in \mathcal{C} and any fibrant Y in \mathcal{D}, a map $FX \to Y$ is a weak equivalence if and only if the adjoint map $X \to GY$ is a weak equivalence.
Quillen Adjunctions and Quillen Equivalences

Definition

Let C and D be model categories and $F : C \leftrightarrow D : G$ an adjunction $D(FX, Y) \cong C(X, GY)$. The adjunction F, G is a Quillen adjunction if one of the following equivalent conditions hold:

- F preserves cofibrations and G preserves fibrations
- F preserves cofibrations and acyclic cofibrations
- G preserves fibrations and acyclic fibrations.

It is a Quillen equivalence if for any cofibrant X in C and any fibrant Y in D, a map $FX \to Y$ is a weak equivalence if and only if the adjoint map $X \to GY$ is a weak equivalence.

Theorem

If F, G is a Quillen adjunction, then the derived functors LF and RG exist and are adjoint functors $\text{Ho } D(X, RGY) \cong \text{Ho } C(LFX, Y)$. The Quillen adjunction is a Quillen equivalence if and only if the derived adjunction on homotopy categories is an equivalence.
Example: Tor and Ext

Let A be a commutative ring.
Let $C_A = Ch(A\text{-Mod})$.
Let M be a differential graded A-module.
Example: Tor and Ext

Let A be a commutative ring.
Let $C_A = Ch(A\text{-Mod})$.
Let M be a differential graded A-module.
Consider

$$M \otimes_A (-) : C_A \rightleftarrows C_A : \text{Hom}_A(M, -)$$
Example: Tor and Ext

Let A be a commutative ring.
Let $\mathcal{C}_A = Ch(A\text{-Mod})$.
Let M be a differential graded A-module.
Consider

$$M \otimes_A (_) : \mathcal{C}_A \leftrightarrow \mathcal{C}_A : \text{Hom}_A(M, _)$$

On the left, give \mathcal{C}_A the model structure with fibrations the surjections; cofibrations are injections with projective cokernel (+ filt. hyp).

On the right give \mathcal{C}_A the model structure with cofibrations the injections; fibrations are surjective with injective kernel (+ filt. hyp.).
Example: Tor and Ext

Let \(A \) be a commutative ring.
Let \(C_A = Ch(A\text{-Mod}) \).
Let \(M \) be a differential graded \(A \)-module.
Consider
\[
M \otimes_A (\cdot) : C_A \rightleftarrows C_A : \text{Hom}_A(M, \cdot)
\]

On the left, give \(C_A \) the model structure with fibrations the surjections; cofibrations are injections with projective cokernel (+ filt. hyp).

On the right give \(C_A \) the model structure with cofibrations the injections; fibrations are surjective with injective kernel (+ filt. hyp.).

This is then a Quillen adjunction and we get an adjunction on the homotopy category
\[
\text{Ho} C_A(M \otimes_A^L X, Y) \cong \text{Ho} C_A(X, R\text{Hom}_A(M, Y)).
\]
Example: Simplicial Sets and Spaces

Adjunction

\[|·| : S \leftrightarrow T : S_\bullet \]

\[|X_\cdot| \to Y \]

is a weak equivalence if and only if \(X_\cdot \to S_\bullet Y \) is a weak equivalence.
Example: Simplicial Sets and Spaces

Adjunction

\[\cdot : S \leftrightarrow T : \cdot \]

\(\cdot\) takes injections to inclusions of subcomplexes.
Example: Simplicial Sets and Spaces

Adjunction

\[|\cdot| : S \leftrightarrow T : S\]

\(|\cdot|\) takes injections to inclusions of subcomplexes.

\(S\) takes Serre fibrations to Kan fibrations.

The map \(X \rightarrow S\) is a weak equivalence for all \(X\) (and so \(|S\) \(Y| \rightarrow Y\) is also a weak equivalence for all \(Y\)).

Then \(|X| \rightarrow Y\) is a weak equivalence if and only if \(X \rightarrow S\) is a weak equivalence.

Quillen Equivalence
Example: Simplicial Sets and Spaces

Adjunction

\[\cdot : S \leftrightarrow \mathcal{T} : S_\bullet \]

\(\cdot\) takes injections to inclusions of subcomplexes.
\(S_\bullet\) takes Serre fibrations to Kan fibrations. \(\implies\) Quillen Adjunction
Example: Simplicial Sets and Spaces

Adjunction

\[|\cdot| : S \rightleftarrows T : S_\bullet \]

\(|\cdot|\) takes injections to inclusions of subcomplexes. \(S_\bullet\) takes Serre fibrations to Kan fibrations. \(\implies\) Quillen Adjunction

Simplicial Approximation Theorem implies:

- Every cell complex is homotopy equivalent to the geometric realization of a simplicial set, so every space is weakly equivalent to the geometric realization of a simplicial set.
- The map \(X_\bullet \to S_\bullet |X_\bullet|\) is a weak equivalence for all \(X\) (and so \(|S_\bullet Y| \to Y\) is also a weak equivalence for all \(Y\)).
Example: Simplicial Sets and Spaces

Adjunction

\[|\cdot| : S \leftrightarrow T : S^\bullet \]

\(|\cdot|\) takes injections to inclusions of subcomplexes.

\(S^\bullet\) takes Serre fibrations to Kan fibrations. \[\rightarrow\] Quillen Adjunction

Simplicial Approximation Theorem implies:

- Every cell complex is homotopy equivalent to the geometric realization of a simplicial set, so every space is weakly equivalent to the geometric realization of a simplicial set.
- The map \(X^\bullet \to S^\bullet |X^\bullet|\) is a weak equivalence for all \(X\) (and so \(|S^\bullet Y| \to Y\) is also a weak equivalence for all \(Y\)).

Then \(|X^\bullet| \to Y\) is a weak equivalence if and only if \(X^\bullet \to S^\bullet Y\) is a weak equivalence.
Example: Simplicial Sets and Spaces

Adjunction

\[|\cdot| : S \leftrightarrow T : S. \]

\(|\cdot| \) takes injections to inclusions of subcomplexes.

\(S. \) takes Serre fibrations to Kan fibrations. \quad \implies \text{Quillen Adjunction}

Simplicial Approximation Theorem implies:

- Every cell complex is homotopy equivalent to the geometric realization of a simplicial set, so every space is weakly equivalent to the geometric realization of a simplicial set.

- The map \(X. \to S. |X.| \) is a weak equivalence for all \(X \) (and so \(|S. Y| \to Y \) is also a weak equivalence for all \(Y \)).

Then \(|X.| \to Y \) is a weak equivalence if and only if \(X. \to S. Y \) is a weak equivalence. \quad \implies \text{Quillen Equivalence}
Example: Simplicial Sets and Spaces

Adjunction

\[\| \| : S \rightleftharpoons T : \| \| \]

\(\| \| \) takes injections to inclusions of subcomplexes.
\(S_\bullet \) takes Serre fibrations to Kan fibrations.

\(\implies \) Quillen Adjunction

Simplicial Approximation Theorem implies:

- Every cell complex is homotopy equivalent to the geometric realization of a simplicial set, so every space is weakly equivalent to the geometric realization of a simplicial set.
- The map \(X_\bullet \to S_\bullet \| X_\bullet \| \) is a weak equivalence for all \(X \) (and so \(\| S_\bullet Y \| \to Y \) is also a weak equivalence for all \(Y \)).

Then \(\| X_\bullet \| \to Y \) is a weak equivalence if and only if \(X_\bullet \to S_\bullet Y \) is a weak equivalence.

\(\implies \) Quillen Equivalence

\(\implies \) equivalence \(\text{Ho} S \simeq \text{Ho} T \)
Web page with slides (available after the talks), exercises, and reference links: http://mypage.iu.edu/~mmandell/