Provably and Practically Efficient Granularity Control

Umut Acar
Carnegie Mellon University and Inria

Vitaly Aksenov
Inria & ITMO University

Arthur Charguéraud
Inria & University of Strasbourg, ICube

Mike Rainey
Indiana University & Inria
Granularity control is a balancing act

Strategies for executing fork-join programs

Parallelize all fork points

Sequentialize all fork points

More practical: somewhere in between
State of the art

- Expect the programmer to solve the problem by tuning the program.

- Goal: minimum-size parallel task is large enough.

- Tuning is an exponential search problem.

- Result is platform dependent code.

- Tuning generic/templated code is impractical.
Limitations of manual granularity control

```java
parallel-for (i=0; i<n; i++)
  b[i] = toUpperCase(a[i])
```
Limitations of manual granularity control

\[
\text{parallel-for (i=0; i<n; i++)} \\
\quad b[i] = \text{toUpperCase(a[i])}
\]

\[
\text{int grain = 5000} \quad // \quad \text{picked by tuning}
\]

\[
\text{parallel-for (i=0; i<(n+grain-1)/grain; i++)} \\
\quad \text{for (j=i*grain; j<min(n, (i+1)*grain); j++)} \\
\quad \quad b[j] = \text{toUpperCase(a[j])}
\]
Limitations of manual granularity control

```
parallel-for (i=0; i<n; i++)
    b[i] = toUpperCase(a[i])
```

```
int grain = 5000 // picked by tuning

parallel-for (i=0; i<(n+grain-1)/grain; i++)
    for (j=i*grain; j<min(n, (i+1)*grain); j++)
        b[j] = toUpperCase(a[j])
```

```
template <F,A,B>
void map(F f, A* a, B* b, int n)
    parallel-for (i=0; i<n; i++)
        b[i] = f(a[i])
        map(toUpperCase, a, b, n)
        map(someExpensiveComputation, a, b, n)
```
Related work & contribution

Main approaches to taming task-creation overheads
Main approaches to taming task-creation overheads

- Reduce the number of tasks created (i.e., prune excess parallelism)
- Reduce the cost of each task creation (useful, but not sufficient)
Related work & contribution

Main approaches to taming task-creation overheads

- Reduce the number of tasks created (i.e., prune excess parallelism)
- Reduce the cost of each task creation (useful, but not sufficient)
- Lazy Scheduling:
 Delay creating a task until it’s needed to realize parallelism
 (requires sophisticated compiler/runtime support; cannot switch irreversibly to serial)
Main approaches to taming task-creation overheads

- Reduce the number of tasks created (i.e., *prune* excess parallelism)
 - Lazy Scheduling: Delay creating a task until it’s needed to realize parallelism
 - (requires sophisticated compiler/runtime support; cannot switch irreversibly to serial)
 - Granularity control: Prediction of running time to throttle task creation
 - (depends on predicting execution time, requires some programmer annotation)

- Reduce the cost of each task creation (useful, but not sufficient)
Main approaches to taming task-creation overheads

- Reduce the number of tasks created (i.e., prune excess parallelism)
- Reduce the cost of each task creation (useful, but not sufficient)

- Lazy Scheduling: Delay creating a task until it’s needed to realize parallelism (requires sophisticated compiler/runtime support; cannot switch irreversibly to serial)
- Granularity control: Prediction of running time to throttle task creation (depends on predicting execution time, requires some programmer annotation)

Our Oracle-Guided Granularity Control: a runtime technique that, for a large, well-defined class of fork-join programs, and any input, ensures provably small overheads and good utilization.
Series-parallel guard

Our goal: lift the burden of tuning by transferring to the runtime.

We propose: (a single, new programming construct)

```
spguard(F_{cost}, F_{par}, F_{seq})
```

- **Abstract-cost function**
 - e.g., $n \times \log(n), n^2$
- **Parallel body**
- **Sequential body**
 - (some code that is semantically equivalent to the parallel body)

Behavior of spguard: determine automatically, at run time, whether to run sequential or parallel body.
Example: parallel mergesort

```java
Seq parallelMergesort(Seq x) {
    Seq r
    spguard([&] {
        int n = size(x)
        return n * log(n)
    }, [&] {
        if size(x) < 2
            r = x
        else
            (x1, x2) = splitInHalves(x)
            r1 = spawn parallelMergesort(x1)
            r2 = spawn parallelMergesort(x2)
            sync
            r = concat(r1, r2)
    }, [&] {
        r = sequentialSort(x)
    }) // end spguard
    return r
}
```
How does it predict when to sequentialize?

Our desired task size:

\(k \) Marginal profitable task size (e.g., 25-500 \(\mu \text{sec} \))
How does it predict when to sequentialize?

Our desired task size:

\[\kappa \quad \text{Marginal profitable task size (e.g., 25-500 \: \mu\text{sec})} \]

Consider an execution of \texttt{spguard}(\texttt{F}_{\text{cost}}, \texttt{F}_{\text{par}}, \texttt{F}_{\text{seq}})

For such an execution, let:

\[\text{cost} = \text{Result of cost function (i.e., } \text{cost} = \texttt{F}_{\text{cost}}()) \]

\[\text{work} = \text{Execution time across all parallel paths of body, (i.e., } \texttt{F}_{\text{par}}() \text{ or } \texttt{F}_{\text{seq}}()) \]
How does it predict when to sequentialize?

Our desired task size:

\(k \) Marginal profitable task size (e.g., 25-500 \(\mu \)sec)

Consider an execution of \(\text{spguard}(F_{\text{cost}}, F_{\text{par}}, F_{\text{seq}}) \)

For such an execution, let:

\(cost = \) Result of cost function (i.e., \(cost = F_{\text{cost}}() \))

\(work = \) Execution time across all parallel paths of body, (i.e., \(F_{\text{par}}() \) or \(F_{\text{seq}}() \)).

After it executes, we update the internal state of the spguard:

\(cost_{\text{max}} \),

which represents the largest observed \(cost \) such that \(work \leq k \).
How does it predict when to sequentialize?

Our desired task size:

\(k \)
Marginal profitable task size (e.g., 25-500 \(\mu \)sec)

Consider an execution of \texttt{spguard}(F_{\text{cost}}, F_{\text{par}}, F_{\text{seq}})

For such an execution, let:

\(\text{cost} \)
Result of cost function (i.e., \(\text{cost} = F_{\text{cost}}() \))

\(\text{work} \)
Execution time across all parallel paths of body, (i.e., \(F_{\text{par}}() \) or \(F_{\text{seq}}() \)).

After it executes, we update the internal state of the spguard:

\(\text{cost}_{max} \),

which represents the largest observed \(\text{cost} \) such that \(\text{work} \leq k \).

Sequentialize iff:
\(\text{cost} \leq 2 \ast \text{cost}_{max} \)
Challenge: predicting when to sequentialize

\[\text{spguard}(F_{\text{cost}}, F_{\text{par}}, F_{\text{seq}}) \]

\(\kappa\) Marginal profitable task size (e.g., 25-500 \(\mu\)sec)

\(\text{cost} = \) Result of cost function (i.e., \(\text{cost} = F_{\text{cost}}()\))

\(\text{work} = \) Execution time across all parallel paths of an execution of the spguard

\[\text{Convergence of } \text{cost}_{\text{max}} : \]

Point at which \(\text{work} > \kappa\)
Cost model and bound

Work

\(w = \text{total \# of vertices} \)

Span

\(s = \text{length of critical path} \)

Work-stealing bound (Blumofe & Leiserson)

For any fork-join program, the running time \(t_p \) on \(p \) cores, including the load balancing operations, but excluding task-creation overheads, is bounded as follows:

\[
E[t_p] \leq \frac{w}{p} + O(s)
\]
Bound for Oracle-Guided Granularity Control

\[W \] Work (total # vertices)

\[S \] Span (critical-path length)

\[t_p \] Running time of the program on \(p \) cores

We extend the model to take into account task-creation costs:

\[\tau \] Cost of creating a fiber

\[\kappa \] Amount of per-task work targeted

(e.g., to ensure 5% per-task overhead, set \(\kappa = 20\tau \))

Work stealing:

\[E[t_p] \leq \frac{w}{p} + O(s) \]

Our bound:

\[E[t_p] \leq \frac{w}{p} + \left(\frac{\tau}{\kappa} \times \frac{w}{p} \right) + O\left(\frac{\kappa}{\tau} \times s \right) + O\left(\log^2 \kappa \right) \]

1. (e.g., 5%)
2. (e.g., 20x)
3. Overhead introduced by granularity controller
C++ library implementation

- Our library provides:
 - the `spguard` construct
 - helper functions for frequently used cost functions
 - parallel-for loops and data-parallel operations, e.g., map, reduce, prefix-scan, filter, etc.

- Our library uses Cilk Plus spawn/sync as basis, but is compatible with any fork-join language or library.

- We ported 8 benchmark codes from the Problem Based Benchmark Suite (PBBS), a collection representing irregular workloads.

- We needed to write only 24 explicit cost functions; the rest could use the default, which is linear complexity.
Benchmarking results

Our spguard automatically delivers similar or better results to manually controlled code.

Execution time: ours vs original PBBS code

(lower is better)

40-core Intel machine with 1TB RAM
Conclusion

Formal bounds for scheduling fork join
- Brent ’74, Arora et al ’98, Blumofe & Leiserson ’99, Agarwal et al ’07, Acar et al ‘11

Lazy-scheduling methods
- Mohr et al ’91, Feeley ’93, Goldstein et al ’96, Frigo et al ’98, Imam et al ’14, Tzannes et al ’14, Acar et al ‘18

Prediction-based methods
- Weening ’89, Pehoushek et al ’90, Lopez et al ’96, Duran et al ’08, Acar et al ’16, Iwasaki et al ’16, Shintaro et al ‘16

Oracle-Guided Granularity control extends these results with analytical bounds on scheduling overheads for fork-join programs.

Oracle-Guided Granularity Control can be implemented as a library and can switch irrevocably to serial algorithms, unlike this class of algorithms.

Oracle-Guided Granularity Control is the first in this class to have a state-of-the-art implementation and be backed by end-to-end bounds.
Conclusion

Formal bounds for scheduling fork join

Brent ’74, Arora et al ’98, Blumofe & Leiserson ’99, Agarwal et al ’07, Acar et al ‘11

Lazy-scheduling methods

Mohr et al ’91, Feeley ’93, Goldstein et al ’96, Frigo et al ’98, Imam et al ’14, Tzannes et al ’14, Acar et al ‘18

Prediction-based methods

Weening ’89, Pehoushek et al ’90, Lopez et al ’96, Duran et al ’08, Acar et al ’16, Iwasaki et al ’16, Shintaro et al ‘16

Oracle-Guided Granularity control extends these results with analytical bounds on scheduling overheads for fork-join programs.

Oracle-Guided Granularity Control can be implemented as a library and can switch irrevocably to serial algorithms, unlike this class of algorithms.

Oracle-Guided Granularity Control is the first in this class to have a state-of-the-art implementation and be backed by end-to-end bounds.

Thanks!