Fixed points of commutative Lüders operations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/1751-8121/43/39/395206)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 115.199.99.119
The article was downloaded on 26/08/2010 at 14:53

Please note that terms and conditions apply.
Fixed points of commutative Lüders operations

Liu Weihua and Wu Junde

Department of Mathematics, Zhejiang University, Hangzhou 310027, People’s Republic of China
E-mail: wjd@zju.edu.cn

Received 4 January 2010, in final form 2 July 2010
Published 26 August 2010
Online at stacks.iop.org/JPhysA/43/395206

Abstract
This paper verifies a conjecture posed in a pair of papers on the fixed point sets for a class of quantum operations. Specifically, it is proved that if a quantum operation has mutually commuting operation elements that are effects forming a resolution of the identity, then the fixed point set of the quantum operation is exactly the commutant of the operation elements.

PACS numbers: 02.30.Tb, 03.65.Ta
Mathematics Subject Classification: 46L07, 47L90, 81R10

1. Introduction
Let H be a complex Hilbert space, $\mathcal{B}(H)$ be the bounded linear operator set on H. If $A \in \mathcal{B}(H)$ and $0 \leq A \leq I$, then A is called a quantum effect on H. Each quantum effect can be used to represent a yes–no measurement that may be unsharp [1–6]. The set of all quantum effects on H is denoted by $\mathcal{E}(H)$; the set of all orthogonal projection operators on H is denoted by $\mathcal{P}(H)$. Each element P of $\mathcal{P}(H)$ can be used to represent a yes–no measurement that is sharp [1–6]. Let $\mathcal{T}(H)$ be the set of all trace class operators on H and $\mathcal{D}(H)$ be the set of all density operators on H, i.e. $\mathcal{D}(H) = \{ \rho : \rho \in \mathcal{T}(H), \rho \geq 0, \text{tr}(\rho) = 1 \}$. Each element ρ of $\mathcal{D}(H)$ represents a state of the quantum system H.

Let $\{ E_i \}_{i=1}^n \subseteq \mathcal{E}(H)$ be the quantum measurement, that is $\sum_{i=1}^n E_i^2 = I$ in the strong operator topology, where $1 \leq n \leq \infty$, then the probability of outcome E_i measured in the state ρ is given by $\text{tr}(\rho E_i)$, and the new quantum state after the measurement \mathcal{A} is performed is defined by

$$\Phi(\rho) = \sum_{i=1}^n E_i \rho E_i.$$

Note that $\Phi : \rho \to \sum_{i=1}^n E_i \rho E_i$ defined a transformation on the state set $\mathcal{D}(H)$; we call it the Lüders transformation [6, 7]. In physics, the question whether a state ρ is not disturbed

1 Author to whom correspondence should be addressed.
by the measurement $A = \{E_i\}_{i=1}^n$ becomes equivalent to the fact that ρ is a solution of the equation

$$\Phi(\rho) = \sum_{i=1}^n E_i \rho E_i = \rho.$$

It was showed in [8] that the measurement $A = \{E_i\}_{i=1}^2$ does not disturb ρ if and only if ρ commutes with each E_i, $i = 1, 2$.

Moreover, if we define the *Luders quantum operation* Φ_A on $\mathcal{B}(H)$ as

$$\Phi_A : \mathcal{B}(H) \to \mathcal{B}(H), \quad B \to \Phi_A(B) = \sum_{i=1}^n E_i B E_i,$$

then an interesting problem is that if $B \in \mathcal{B}(H)$ is a fixed point of Φ_A, that is, $\Phi_A(B) = \sum_{i=1}^n E_i B E_i = B$, then B commutes with each E_i, $i = 1, 2, \ldots, n$.

In [9, 10], we knew the conclusion is true if H is a finite-dimensional complex Hilbert space. In [9–11], it was showed that the conclusion is not true when $n = 5$ or $n = 3$ for infinite-dimensional complex Hilbert spaces. Thus, the general conclusion for infinite-dimensional cases is false. On the other hand, Busch and Singh in [8] showed that for \mathcal{E} the conclusion is true for all complex Hilbert spaces. Note that in this case, $E_1 E_2 = E_2 E_1$, that is, $A = \{E_1, E_2\}$ is commutative. This motivated Arias, Gheonda, Gudder and Nagy to conjecture when $A = \{E_i\}_{i=1}^n \subseteq \mathcal{E}(H)$ is commutative, then the conclusion is true, that is, the fixed point set of Φ_A is exactly the commutant A' of the operation elements $A = \{E_i\}_{i=1}^n$. Moreover, Nagy in [12] showed that if the conjecture is true, then

$$\Phi_A(E) = \sum_{i=1}^n E_i E E_i = I - E$$

has the unique solution $\frac{1}{2}I$ in $\mathcal{E}(H)$; in physics, it showed that if the measurement A disturbs the quantum effect E completely into its supplement $I - E$, then E has to be $\frac{1}{2}I$.

As showed in [13–16], the structures of fixed point sets of quantum operations have important applications in quantum information theory; in particular, in [15, theorem 3], the fixed point set is a matrix algebra which shares an elegant structure, played a central role in identifying the protected structures.

In this paper, by using the spectral theory of self-adjoint operators, we prove the conjecture affirmatively. Moreover, when $A = \{E_i\}_{i=1}^n \subseteq \mathcal{E}(H)$ is commutative and $F = \sum_{i=1}^n E_i^2 < I$, we also obtain a nice conclusion. Note that the von Neumann algebra \mathcal{N} generated by $\{E_i\}_{i=1, \ldots, n}$ is Abelian which can be embed into a maximal Abelian von Neumann algebra. Since a maximal Abelian von Neumann algebra \mathcal{M} on a separable Hilbert space is always a direct sum of \mathcal{M}_1 and \mathcal{M}_2. Here \mathcal{M}_1 is isometric to $\bigoplus_{i=1}^{\infty} C_{i}$ and \mathcal{M}_2 is isometric to $L_{\infty}(B)$, where B is a compact subset of the real number set R. Thus, A' has the form $\bigoplus_{k=1}^{\infty} M_k \otimes 1_{n_k} \bigoplus L_{\infty}(C)$, where C is a subset of B and M_k is a matrix algebra whose dimension is k and n_k ranges from 0 to ∞ [17]. So our conclusions are analogous with the finite-dimensional cases’ concise shape in theorem 3 in [15].

2. Element lemmas and proofs

Let $1 \leq n < \infty$ and $A = \{E_i\}_{i=1}^n \subseteq \mathcal{E}(H)$ be commutative. Firstly, for each E_i, $1 \leq i \leq n$, we have the spectral representation theorem

$$E_i = \int_0^1 \lambda \, dF_{E_i}^{(i)}.$$
where \(\{ F^{(i)}_\lambda \}_{\lambda \in \mathbb{R}} \) is the identity resolution of \(E_i \) satisfying that \(\{ F^{(i)}_\lambda \}_{\lambda \in \mathbb{R}} \) is right continuous in the strong operator topology and \(F^{(i)}_\lambda \) is right continuous for any rational number \(q = \frac{p}{l} \), where \(p, l \) are integers. If \(\frac{p}{l} < 0 \), then \(F^{(i)}_\lambda = 0 \), and if \(\frac{p}{l} > 1 \), then \(F^{(i)}_\lambda = I \). Let \(l > p \geq 0 \), so \(0 \leq \frac{p}{l} < 1 \). Then \(F^{(i)}_\lambda = PE_i \left(\frac{l - 1}{l}, 0 \right) + PE_i \left(0, \frac{l}{l} \right) + \ldots + PE_i \left(\frac{l - 1}{l}, \frac{l}{l} \right) \), so we can prove easily that

\[
F^{(i)}_\lambda = \sum_{k_i < p} \left(\sum_{k_{i_1}, \ldots, k_{i_n}, k_{i_{n+1}}, \ldots, k_{i_m}} A \right)
\]

So, for each rational number \(q = \frac{p}{l} \), \(F^{(i)}_\lambda \) commutes with \(B \); note that \(\{ F^{(i)}_\lambda \}_{\lambda \in \mathbb{R}} \) is right continuous in the strong operator topology, so \(B \) commutes with each \(E_i \), \(i = 1, 2, \ldots, n \).

Lemma 2.1. Let \(1 \leq n < \infty \), \(A = \{ E_i \}_{i=1}^n \subseteq \mathcal{E}(H) \) be commutative and \(B \in \mathcal{B}(H) \). If for any integers \(m, k_1, k_2, \ldots, k_n \), \(B \) commutes with \(F^{(i)}_{k_1, \ldots, k_n} \), then \(B \) commutes with each \(E_i \) in \(A = \{ E_i \}_{i=1}^n \).

Proof. For each rational number \(q = \frac{p}{l} \), where \(p, l \) are integers. If \(\frac{p}{l} < 0 \), then \(F^{(i)}_\lambda = 0 \), and if \(\frac{p}{l} > 1 \), then \(F^{(i)}_\lambda = I \). Let \(l > p \geq 0 \), so \(0 \leq \frac{p}{l} < 1 \). Then \(F^{(i)}_\lambda = PE_i \left(\frac{l - 1}{l}, 0 \right) + PE_i \left(0, \frac{l}{l} \right) + \ldots + PE_i \left(\frac{l - 1}{l}, \frac{l}{l} \right) \); thus, we can prove easily that

\[
F^{(i)}_\lambda = \sum_{k_i < p} \left(\sum_{k_{i_1}, \ldots, k_{i_n}, k_{i_{n+1}}, \ldots, k_{i_m}} B \right)
\]

Let \(\{ E_i \}_{i=1}^n \subseteq \mathcal{E}(H) \) be commutative and \(B \in \mathcal{B}(H) \). If \(B \) does not commute with some \(E_i \) in \(A \), there are integers \(m, k_1, k_2, \ldots, k_n, k'_1, k'_2, \ldots, k'_m \), such that \(k_i \neq k'_i \) for at least one \(i \) and \(F^{(i)}_{k_1, \ldots, k_n} B F^{(i)}_{k'_1, \ldots, k'_n} \neq 0 \).

Lemma 2.2. Let \(1 \leq n < \infty \), \(A = \{ E_i \}_{i=1}^n \subseteq \mathcal{E}(H) \) be commutative and \(B \in \mathcal{B}(H) \). If \(B \) does not commute with some \(E_i \) in \(A \), then there are integers \(m, k_1, k_2, \ldots, k_n, k'_1, k'_2, \ldots, k'_m \), such that \(k_i \neq k'_i \) for at least one \(i \) and \(F^{(i)}_{k_1, \ldots, k_n} B F^{(i)}_{k'_1, \ldots, k'_n} \neq 0 \). In fact, if not, we will get that

\[
F^{(i)}_{k_1, k_2, \ldots, k_n} B = \sum_{k_{i_1}, \ldots, k_{i_n}} F^{(i)}_{k_1, k_2, \ldots, k_n} B F^{(i)}_{k_{i_1}, \ldots, k_{i_n}} = F^{(i)}_{k_1, k_2, \ldots, k_n} B F^{(i)}_{k_{i_1}, \ldots, k_{i_n}}
\]

This is a contradiction. Similarly, if \(B F^{(i)}_{k_1, \ldots, k_n} \neq F^{(i)}_{k_1, \ldots, k_n} B F^{(i)}_{k_{i_1}, \ldots, k_{i_n}} \), we will also get the same conclusion. The lemma is proven.

Moreover, we have a stronger conclusion in the following.

Lemma 2.3. Let \(A \in \mathcal{E}(H) \) and \(B \in \mathcal{B}(H) \). If \(B \) does not commute with \(A \), then there exist integers \(m, k \) and \(j \) with \(|k - j| \geq 2 \) such that

\[
P^A \left(\frac{k}{m}, \frac{k + 1}{m} \right) B P^A \left(\frac{j}{m}, \frac{j + 1}{m} \right) = 0.
\]

Proof. By lemma 2.2, we can find \(k_1 \neq j_1 \) such that \(C = P^A \left(\frac{k_1}{m}, \frac{k_1 + 1}{m} \right) B P^A \left(\frac{j_1}{m}, \frac{j_1 + 1}{m} \right) \neq 0 \). If \(|k_1 - j_1| \geq 2 \), then we get the \(m, k, j \) satisfy the lemma. If \(j_1 = k_1 + 1 \), we replace \(m \) by
Now we consider \(k_2, k_2 + 1 \) and \(j_2, j_2 + 1 \), if we still cannot take \(|k - j| \geq 2 \) satisfy the conclusion, then

\[
\begin{align*}
&\quad P^A \left(\frac{k_2 + 1}{2m} \right) BP^A \left(\frac{j_2 + 1}{2m} \right) = 0, \\
&\quad P^A \left(\frac{k_2 + 1}{2m} \right) BP^A \left(\frac{j_2 + 1}{2m} \right) = 0, \\
&\quad P^A \left(\frac{k_2 + 1}{2m} \right) BP^A \left(\frac{j_2 + 1}{2m} \right) = 0.
\end{align*}
\]

So we have \(C = P^A \left(\frac{k_2 + 1}{2m} \right) BP^A \left(\frac{j_2 + 1}{2m} \right) \).

Following this, we find the integers \(k, j \) which satisfy the conclusion or we get a sequence \(\{p_i, p_i + 1, 2^{-i-1}m\}_{i=1}^\infty \) such that \(p_i + 1 = 2^{-i}j_1 \) and \(C = P^A \left(\frac{p_i}{2^{i-1}m}, \frac{p_i + 1}{2^{i-1}m} \right) BP^A \left(\frac{p_i + 1}{2^{i-1}m}, \frac{p_i + 2}{2^{i-1}m} \right) \).

If the first case occurs, then we proved the lemma. If the second case occurs, note that \(\lim_{i \to \infty} P^A \left(\frac{p_i}{2^{i-1}m}, \frac{p_i + 1}{2^{i-1}m} \right) = P^A \left(\frac{j_1}{m} \right) \) and \(\lim_{i \to \infty} P^A \left(\frac{p_i + 1}{2^{i-1}m}, \frac{p_i + 2}{2^{i-1}m} \right) = 0 \) in strong operator topology; thus,

\[
\lim_{i \to \infty} P^A \left(\frac{p_i}{2^{i-1}m}, \frac{p_i + 1}{2^{i-1}m} \right) BP^A \left(\frac{p_i + 1}{2^{i-1}m}, \frac{p_i + 2}{2^{i-1}m} \right) = 0
\]

in strong operator topology [17]. But for each positive integer \(i \),

\[
C = P^A \left(\frac{p_i}{2^{i-1}m}, \frac{p_i + 1}{2^{i-1}m} \right) BP^A \left(\frac{p_i + 1}{2^{i-1}m}, \frac{p_i + 2}{2^{i-1}m} \right),
\]

so we get \(C = 0 \); this is a contradiction, and the lemma is proved in this case.

If \(k_1 + 1 = j_1 \), we just need to take all the above calculations in adjoint and interchange the indices \(j \) and \(k \). The proof is similar; thus, we proved the lemma. \(\square \)

Lemma 2.4. Let \(1 \leq n < \infty, A = \{E_i\}_{i=1}^n \subseteq \mathcal{E}(H) \) be commutative and \(\sum_{i=1}^n E_i^2 \leq I \). If \(X \in B(H) \) is not commutative with \(E_i \), then there exists a positive integer \(m \) such that for each positive integer \(p \), there exist projection operators \(P, Q \in A', P Q = 0, Y = P X Q \neq 0 \), and

\[
\frac{||Y|| - ||\Phi_A(Y)||}{||Y||} \geq \frac{p^2 - 4\sqrt{mp} - 2n}{2(pm)^2}.
\]

Proof. Since \(X \) does not commute with \(E_i \), it follows from lemma 2.3 that there exist integers \(m, k, j \) such that \(|k - j| \geq 2 \) and \(P^{E_i} (\frac{k}{m}, \frac{k+1}{m}) X P^{E_i} (\frac{j}{m}, \frac{j+1}{m}) \neq 0 \). Note that

\[
p^{E_i} (\frac{k}{m}, \frac{k+1}{m}) X P^{E_i} (\frac{j}{m}, \frac{j+1}{m}) = \sum_{k_1, ..., k_n} \sum_{j_1, ..., j_n} F^{m}_{k, k_1, ..., k_n} X F^{m}_{j, j_1, ..., j_n},
\]
so there exist \(k, k_2, \ldots, k_n \) and \(j, j', k', \ldots, k' \) such that \(|k - j| \geq 2 \) and
\[
F^m_{k, k_2, \ldots, k_n} X F^m_{j, k_2', \ldots, k_n}
\neq 0.
\]
Let \(P_0 = F^m_{k, k_2, \ldots, k_n}, Q_0 = F^m_{j, k_2', \ldots, k_n}, \) \(Y_0 = P_0 X Q_0 \). Then \(P_0 \) and \(Q_0 \) are projection operators and \(P_0, Q_0 \in \mathcal{A}' \), \(P_0 Q_0 = 0 \), \(Y_0 = P_0 X Q_0 \neq 0 \). Moreover, for each \(i = 1, 2, \ldots, n \), if we denote \(k_i = k, k_i' = j \), then
\[
\| E_i Y_0 E_i \| = \left\| E_i P E_i \left(\frac{k_i}{m}, \frac{k_i + 1}{m} \right) Y_0 P E_i \left(\frac{k_i'}{m}, \frac{k_i' + 1}{m} \right) E_i \right\|
\leq \left\| E_i P E_i \left(\frac{k_i}{m}, \frac{k_i + 1}{m} \right) Y_0 \right\| \left\| P E_i \left(\frac{k_i'}{m}, \frac{k_i' + 1}{m} \right) E_i \right\|
\leq \frac{k_i + 1}{m} \| Y_0 \| \frac{k_i' + 1}{m}
= \frac{k_i + 1}{m} \frac{k_i' + 1}{m} \| Y_0 \|.
\] (1)

Thus, we have
\[
\sum_{i=1}^{n} E_i Y_0 E_i \leq \sum_{i=1}^{n} \| E_i Y_0 E_i \| \leq \left(\sum_{i=1}^{n} \frac{k_i k_i'}{m^2} + \frac{n}{m^2} \right) \| Y_0 \|.
\] (2)

Since \(\sum_{i=1}^{n} E_i^2 \leq I \) and
\[
F^m_{k_1, k_2, \ldots, k_n} \left(I - \sum_{i=1}^{n} E_i^2 \right) = F^m_{k_1, k_2, \ldots, k_n} - \sum_{i=1}^{n} E_i^2
\leq F^m_{k_1, k_2, \ldots, k_n} - \sum_{i=1}^{n} \frac{k_i k_i'}{m^2} F^m_{k_1, k_2, \ldots, k_n}
= \left(1 - \sum_{i=1}^{n} \frac{k_i^2}{m^2} \right) F^m_{k_1, k_2, \ldots, k_n},
\] (3)

so, we have \(\sum_{i=1}^{n} k_i^2 \leq m^2 \). Similarly, we have also \(\sum_{i=1}^{n} k_i^2 \leq m^2 \). Moreover, note that
\[
2m^2 \left(1 - \sum_{i=1}^{n} \frac{k_i k_i'}{m^2} - \sum_{i=1}^{n} \frac{k_i + k_i'}{m^2} - \frac{n}{m^2} \right) = m^2 + m^2 - 2 \sum_{i=1}^{n} k_i k_i' - 2 \sum_{i=1}^{n} (k_i + k_i') - 2n
\geq \sum_{i=1}^{n} k_i^2 + \sum_{i=1}^{n} k_i^2 - 2 \sum_{i=1}^{n} k_i k_i' - 2 \sum_{i=1}^{n} (k_i + k_i') - 2n
= \sum_{i=1}^{n} (k_i - k_i')^2 - 2 \sum_{i=1}^{n} (k_i + k_i') - 2n
\geq (k_i - k_i')^2 - 2 \sum_{i=1}^{n} (k_i + k_i') - 2n,
\] (4)

and \((\sum_{i=1}^{n} k_i)^2 \leq n (\sum_{i=1}^{n} k_i^2) \leq nn^2, (\sum_{i=1}^{n} k_i')^2 \leq n (\sum_{i=1}^{n} k_i'^2) \leq nm^2, \) we have
\[
2m^2 \left(1 - \sum_{i=1}^{n} \frac{k_i k_i'}{m^2} - \sum_{i=1}^{n} \frac{k_i + k_i'}{m^2} - \frac{n}{m^2} \right) \geq (j - k)^2 - 4\sqrt{nm} - 2n.
\] (5)
On the other hand, it follows from
\[\|Y_0\| - \left\| \sum_{i=1}^{n} E_i Y_0 E_i \right\| \geq \|Y_0\| - \sum_{i=1}^{n} \|E_i Y_0 E_i\| \]
\[\geq \left[1 - \left(\sum_{i=1}^{n} \frac{k_i k'_i}{m^2} + \sum_{i=1}^{n} \frac{k_i + k'_i}{m^2} + \frac{n}{m^2} \right) \right] \|Y_0\| \]
and (5) that
\[\frac{\|Y_0\| - \|\Phi_A(Y_0)\|}{\|Y_0\|} \geq \frac{(j - k)^2 - 4\sqrt{\eta m} - 2n}{2m^2}. \]

For each positive integer \(p \), we replace \(m \) with \(pm \). Note that
\[Y_0 = \sum_{s_1, s_2, \ldots, s_n} \sum_{s'_1, s'_2, \ldots, s'_n} F^{pm}_{s_1, s_2, \ldots, s_n} Y_0 F^{pm}_{s'_1, s'_2, \ldots, s'_n} \neq 0, \]
so there exist \(s_1, s_2, \ldots, s_n \) and \(s'_1, s'_2, \ldots, s'_n \) such that
\[Y = F^{pm}_{s_1, s_2, \ldots, s_n} Y_0 F^{pm}_{s'_1, s'_2, \ldots, s'_n}
eq 0. \]

Thus, it is easily to prove that \(\frac{k_i}{m} \leq \frac{s_i}{pm} \leq \frac{k_i + 1}{m} \) and \(\frac{k'_i}{m} \leq \frac{s'_i}{pm} \leq \frac{k'_i + 1}{m} \). Note that \(k_i = k, k'_i = j \) and \(\frac{j - k}{m} \geq \frac{2}{m} \), we have
\[\frac{s_i - s'_i}{pm} \geq \frac{k_i + 1 - k'_i}{m} \geq 1/m; \]
thus
\[\|s_i - s'_i\| \geq p. \]

By the similar analysis methods as (5), we get
\[2(pm)^2 \left(1 - \sum_{i=1}^{n} \frac{s_i s'_i}{(pm)^2} - \sum_{i=1}^{n} \frac{s_i + s'_i}{(pm)^2} - \frac{n}{(pm)^2} \right) \geq p^2 - 4\sqrt{\eta mp} - 2n. \] (6)

On the other hand, we also have
\[\|Y\| - \left\| \sum_{i=1}^{n} E_i Y E_i \right\| \geq \|Y\| - \sum_{i=1}^{n} \|E_i Y E_i\| \]
\[\geq \left[1 - \left(\sum_{i=1}^{n} \frac{k_i k'_i}{m^2} + \sum_{i=1}^{n} \frac{k_i + k'_i}{m^2} + \frac{n}{m^2} \right) \right] \|Y\|. \]

Let \(P = F^{pm}_{s_1, s_2, \ldots, s_n} P_0 \) and \(Q = Q_0 F^{pm}_{s'_1, s'_2, \ldots, s'_n} \). Then it is clear that \(P, Q \in A' \), \(PQ = 0 \), \(Y = PXQ \neq 0 \), and
\[\frac{\|Y\| - \|\Phi_A(Y)\|}{\|Y\|} \geq \frac{p^2 - 4\sqrt{\eta m} - 2n}{2(pm)^2}. \]

The lemma is proved. \(\square \)

It follows from the proof of lemma 2.4 that we have the following important conclusion:

Corollary 2.1. Let \(1 \leq n < \infty \), \(A = \{E_i\}_{i=1}^{n} \subseteq \mathcal{E}(H) \) be commutative and \(\sum_{i=1}^{n} E_i^2 \leq 1 \). If \(X \in B(H) \) and there exist integers \(m, k, \) and \(j \) with \(|k - j| \geq 2 \) such that
\[p E_i \left(\frac{k}{m}, \frac{k + 1}{m} \right) X p E_i \left(\frac{j}{m}, \frac{j + 1}{m} \right) \neq 0, \]

\[\frac{p E_i \left(\frac{k}{m}, \frac{k + 1}{m} \right) X p E_i \left(\frac{j}{m}, \frac{j + 1}{m} \right)}{\|p E_i \left(\frac{k}{m}, \frac{k + 1}{m} \right) X p E_i \left(\frac{j}{m}, \frac{j + 1}{m} \right)\|} \neq 0, \]

\[\frac{\|Y\| - \|\Phi_A(Y)\|}{\|Y\|} \geq \frac{p^2 - 4\sqrt{\eta m} - 2n}{2(pm)^2}. \]
then for each positive integer p, there exist projection operators $P, Q \in \mathcal{A}$, $PQ = 0$, $Y = PXQ \neq 0$, and
\[
\frac{\|Y\| - \|\Phi_d(Y)\|}{\|Y\|} \geq \frac{p^2 - 4\sqrt{nmp} - 2n}{2(pm)^2}.
\]

3. Main results and proofs

Let $\mathcal{A} = \{E_i\}_{i=1}^n \subseteq \mathcal{E}(H)$ and Φ_d be the Lüders quantum operation which is decided by \mathcal{A}. It is easy to prove that $\|\Phi_d\| = \|\sum_{i=1}^n E_i^2\|$ [9]. Now, we denote $B(H)^{\Phi_d}$ to be the fixed point set of Φ_d and \mathcal{A}' to be the commutant of \mathcal{A}, that is, $B(H)^{\Phi_d} = \{B \in B(H) \mid \Phi_d(B) = B\}$, $\mathcal{A}' = \{B \in B(H) \mid BE_i = E_iB, 1 \leq i \leq n\}$. It is clear that if $\sum_{i=1}^n E_i^2 = I$ in strong operator topology, then $\mathcal{A}' \subseteq B(H)^{\Phi_d}$.

Theorem 3.1. Let $1 \leq n \leq \infty$, $\mathcal{A} = \{E_i\}_{i=1}^n \subseteq \mathcal{E}(H)$ be commutative and $\sum_{i=1}^n E_i^2 = I$ in strong operator topology. Then
\[
B(H)^{\Phi_d} = \left\{B \in B(H) \mid \Phi_d(B) = \sum_{i=1}^n E_iB E_i = B \right\} = \mathcal{A}'.
\]

Proof. Since $\mathcal{A}' \subseteq B(H)^{\Phi_d}$, in order to prove the converse containing relation, we suppose that $B \in B(H)^{\Phi_d} \setminus \mathcal{A}'$. Without loss of generality, we can suppose that B is not commutative with E_1. By lemma 2.3, there is a triple integer set (m, j, k) such that $|k - j| \geq 2$ and $P E_{\left(\frac{k}{m}, \frac{k+1}{m}\right)} B P E_{\left(\frac{j}{m}, \frac{j+1}{m}\right)} P_q \neq 0$.

For each positive integer $q \leq n$, let $F_q = \sum_{i=1}^n E_i^2$ and $\Phi_q : B(H) \to B(H)$ be defined by $\Phi_q(A) = \sum_{i=1}^n E_i A E_i$. Then $F_q \to I$ in strong operator topology and Φ_q is a completely positive map. If $P_q = P E_{\left(1 - \frac{2q}{\sqrt{4q^2 - 1}}\right)}$, then $P_q \to I$ in strong operator topology (see [18], P248). Now we show that $P_q P E_{\left(\frac{k}{m}, \frac{k+1}{m}\right)} B P E_{\left(\frac{j}{m}, \frac{j+1}{m}\right)} P_q = 0$. In fact, if not, note that
\[
P E_{\left(\frac{k}{m}, \frac{k+1}{m}\right)} P_q P E_{\left(\frac{j}{m}, \frac{j+1}{m}\right)} B P E_{\left(\frac{j}{m}, \frac{j+1}{m}\right)} P_q \neq 0,
\]
so, by corollary 2.1, for each positive integer p, there exist projection operators P and Q, $P, Q \in \mathcal{A}'$, $PQ = 0$, such that
\[
Y = PP E_{\left(\frac{k}{m}, \frac{k+1}{m}\right)} B P E_{\left(\frac{j}{m}, \frac{j+1}{m}\right)} P_q Q
\]
and
\[
\frac{\|Y\| - \|\Phi_q(Y)\|}{\|Y\|} \geq \frac{p^2 - 4\sqrt{qmp} - 2q}{2(pm)^2}.
\]
Since
\[
\frac{p^2 - 4\sqrt{qmp} - 2q}{2(pm)^2} \to \frac{1}{2m^2}
\]
as $p \to \infty$. So we can choose Y such that
\[
\frac{\|Y\| - \|\Phi_q(Y)\|}{\|Y\|} \geq \frac{3}{8m^2}.
\]
Note that $P_q E_i = E_i P_q$ and $P_q Y = Y P_q$ for each $1 \leq i \leq n$, $\mathcal{A}_1 = \{ P_q E_i \}_{i=1}^n$ decides a Lüders operation $\Phi_{\mathcal{A}_1}$, and

$$
\|\Phi_{\mathcal{A}_1}\| = \left\| \sum_{i=q+1}^{n} P_q E_i^2 P_q \right\| = \left\| P_q \left(\sum_{i=q+1}^{n} E_i^2 \right) P_q \right\| = \left\| P_q \left(I - \sum_{i=1}^{q} E_i^2 \right) P_q \right\| \leq \frac{1}{4m^2},
$$

so we have

$$
\|\Phi_{\mathcal{A}}(Y)\| = \left\| \Phi_{\mathcal{A}}(Y) + \sum_{i=q+1}^{n} E_i Y E_i \right\| = \left\| \Phi_{\mathcal{A}}(Y) + \sum_{i=q+1}^{n} P_q E_i Y E_i P_q \right\| \leq \left\| \Phi_{\mathcal{A}}(Y) \right\| + \left\| \sum_{i=q+1}^{n} P_q E_i Y E_i P_q \right\| = \left\| \Phi_{\mathcal{A}}(Y) \right\| + \left\| \Phi_{\mathcal{A}_1}(Y) \right\| \leq \left(1 - \frac{3}{8m^2} \right) \|Y\| + \frac{1}{4m^2} \|Y\| = \left(1 - \frac{3}{8m^2} \right) \|Y\|. \tag{7}
$$

On the other hand, we show that $Y = P_q P^E_{\left(\frac{k}{m}, \frac{k+1}{m} \right)} B P^E_{\left(\frac{j}{m}, \frac{j+1}{m} \right)} Q P_q \in \mathcal{B}(H)_{\Phi_{\mathcal{A}}}$. In fact, note that $\{ P_q, P, P^E_{\left(\frac{k}{m}, \frac{k+1}{m} \right)} P^E_{\left(\frac{j}{m}, \frac{j+1}{m} \right)} Q \} \subseteq \mathcal{A}'$ and $\Phi_{\mathcal{A}}(B) = B$, so we have

$$
\Phi_{\mathcal{A}}(Y) = \sum_{i=1}^{n} E_i Y E_i = \sum_{i=1}^{n} E_i P_q P^E_{\left(\frac{k}{m}, \frac{k+1}{m} \right)} B P^E_{\left(\frac{j}{m}, \frac{j+1}{m} \right)} Q P_q E_i
$$

This contradicts (7) and so $P_q P^E_{\left(\frac{k}{m}, \frac{k+1}{m} \right)} B P^E_{\left(\frac{j}{m}, \frac{j+1}{m} \right)} Q P_q = 0$. Note that

$$
P^E_{\left(\frac{k}{m}, \frac{k+1}{m} \right)} B P^E_{\left(\frac{j}{m}, \frac{j+1}{m} \right)} \xrightarrow{q \to \infty} P_q E_{\left(\frac{k}{m}, \frac{k+1}{m} \right)} B P^E_{\left(\frac{j}{m}, \frac{j+1}{m} \right)} P_q
$$

in strong operator topology [17], so

$$
P^E_{\left(\frac{k}{m}, \frac{k+1}{m} \right)} B P^E_{\left(\frac{j}{m}, \frac{j+1}{m} \right)} = 0.
$$

This contradicts $P^E_{\left(\frac{k}{m}, \frac{k+1}{m} \right)} B P^E_{\left(\frac{j}{m}, \frac{j+1}{m} \right)} \neq 0$. So $B \in \mathcal{A}'$. \qed

Theorem 3.2. Let $1 \leq n \leq \infty$, $\mathcal{A} = \{ E_i \}_{i=1}^{n} \subseteq \mathcal{C}(H)$ be commutative and $F = \sum_{i=1}^{n} E_i^2 < I$. If $P = P^F\{1\}$, where P^F is the spectral measure of F, then

$$
\mathcal{B}(H)_{\Phi_{\mathcal{A}}} = \left\{ B \in \mathcal{B}(H) | \Phi_{\mathcal{A}}(B) = \sum_{i=1}^{n} E_i B E_i = B \right\} = P \mathcal{A}'.
$$
Proof. Firstly, by the spectral representation theorem [17] we have \(PF = FP = P \). Let \(B \in B(H)^{\Phi, \lambda} \). Then as the analysis of theorem 3.1, we have \(B \in \mathcal{A}' \). Let \(Q \in B(H)/\Phi \). Then as the analysis of theorem 3.1, we have \(Q_k \in \mathcal{A}' \). Let \(\Phi_k \) be the completely positive map which is decided by \(\{ E(Q_k) \}_{k=1}^{n} \). Thus, we have \(\| \Phi_k \| \leq 1 - \frac{1}{k} \). Note that \(\mathcal{B}, \mathcal{A}' \) and \(\mathcal{B}(H)/\Phi \); thus, we have \(\mathcal{S}(H)^{\Phi, \lambda} \subseteq \mathcal{B}(H)^{\Phi, \lambda} \), and the theorem is proved.

Acknowledgments

The authors wish to express their thanks to the referees for their valuable comments and suggestions. This project is supported by Zhejiang Innovation Program for Graduates (YK2009002) and Natural Science Foundations of China (10771191 and 10471124) and Natural Science Foundation of Zhejiang Province of China (Y6090105).

References