Extended HQFTs in dimension 2

Kürşat Sözer

Indiana University Bloomington

ksozer@indiana.edu
Overview

1. Review of TQFTs and HQFTs
2. The main theorem and the idea of the proof
3. \((G \times SO(2))\)-structured Cobordism Hypothesis
Topological quantum field theories

Definition ([Atiyah, 1988])

An \((n + 1)\)-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor

\[Z : ((n + 1)\text{Cob}, \amalg) \to (\text{Vect}_\mathbb{C}, \otimes). \]

- The symmetric monoidal category \((n + 1)\text{Cob}\) has closed oriented \(n\)-manifolds as objects and diffeomorphism classes of oriented cobordisms relative to boundary as morphisms. The symmetric monoidal product \(\amalg\) is disjoint union of manifolds.

- The symmetric monoidal category \(\text{Vect}_\mathbb{C}\) has finite dimensional complex vector spaces as objects and linear transformations as morphisms. The symmetric monoidal product \(\otimes\) is the tensor product.
Two-dimensional TQFTs

$n = 1$: \[Z : (\text{2Cob}, \mathbb{I}) \to (\text{Vect}_\mathbb{C}, \otimes) \]
Two-dimensional TQFTs

Functoriality of TQFTs implies that such a linear transformation factors as composition of linear transformations obtained by possible cuttings of the surface along circles.

\[Z : (2\text{Cob}, \llbracket \rrbracket) \rightarrow (\text{Vect}_\mathbb{C}, \otimes) \]
The category 2TQFT_k of 2-dimensional TQFTs and monoidal natural transformations is equivalent to the category $c\text{Frob}_k$ of commutative Frobenius algebras and Frobenius algebra homomorphisms.

A Frobenius algebra (A, β) is a finite dimensional k-algebra A equipped with an associative nondegenerate pairing $\beta : A \otimes A \to k$.

Example

$(H^*(\mathbb{C}P^n; \mathbb{C}), \beta) = (\mathbb{C}[\alpha]/\alpha^{n+1}, \beta)$ is a commutative Frobenius algebra with $\beta(a, b) = a \cup b([\mathbb{C}P^n])$.
Generalizations of TQFTs

There are two different generalizations of TQFTs:

- **Structured TQFTs** where manifolds and cobordisms are equipped with additional structures such as framing or principal G-bundles.
- **Extended TQFTs** where manifolds with corners are allowed.

Definition ([Turaev, 1999])

Let (X, x) be an aspherical pointed CW-complex with $\pi_1(X, x) = G$. An n-dimensional X-manifold is a tuple (M, g) where M is a closed oriented pointed n-manifold and $g \in [(M, m), (X, x)]$ is a pointed homotopy class.

An X-cobordism (W, P) between two X-manifolds (M_1, g_1) and (M_2, g_2) is a cobordism between M_1 and M_2 and $P \in [W, X]$ is a homotopy class restricting to g_1 and g_2 on boundary components.

X-manifolds and X-cobordisms form the symmetric monoidal category $((n + 1)X\text{Cob}, \boxtimes)$.
Homotopy quantum field theories

Definition ([Turaev, 1999])

Let X be an aspherical pointed CW-complex. An $(n+1)$-dimensional homotopy quantum field theory (HQFT) with target X is a symmetric monoidal functor $Z : ((n+1)X\text{Cob}, \sqcup) \to (\text{Vect}_\mathbb{C}, \otimes)$.

$n=1$: $Z : (2X\text{Cob}, \sqcup) \to (\text{Vect}_\mathbb{C}, \otimes)$
Theorem ([Turaev, 1999])

The category 2HQFT of 2-dimensional HQFTs with target $X \cong K(G,1)$ and monoidal transformations is equivalent to the category $\mathcal{C}Frob^G$ of crossed Frobenius G-algebras and crossed Frobenius G-algebra homomorphisms.

Frobenius G-algebra (A, β) is a G-graded algebra $A = \bigoplus_{g \in G} A_g$ equipped with an associative nondegenerate pairing $\beta : A \otimes A \rightarrow \mathbb{k}$. The crossed structure on A is a group homomorphism $\varphi : G \rightarrow \text{Aut}(A)$ where each φ_g is conjugation type i.e. $g \mapsto \varphi_g|_{A_g'} : A_g' \rightarrow A_{gg'g^{-1}}$ such that $\varphi_g'(a)b = ba$ for all $a \in A_g$ and $b \in A_{g'}$.

Example

The group algebra $(\mathbb{C}[G], \beta, \varphi)$ is a crossed Frobenius G-algebra where $\beta(a, b)$ is the coefficient of e in the expression ab and φ_g is the conjugation.
A different generalization of TQFTs is by using manifolds with corners and higher categories. The main motivation for this type of generalization is to be able cut a cobordism along different directions and compute the invariants from the invariants of simpler pieces.
Definition ([Schommer-Pries, 2009])

The symmetric monoidal bordism bicategory Bord_2 has compact oriented 0-manifolds as objects, oriented 1-cobordisms as 1-morphisms and diffeomorphism classes of oriented $\langle 2 \rangle$-surfaces relative to boundary as 2-morphisms.

An example of $\langle 2 \rangle$-surface S is shown below as a 2-morphism $S : A \to B$ where $A, B : M \to N$.

\begin{center}
\begin{tikzcd}
\vdots \\
M \times I \\
\vdots \\
A \arrow[d, bend left] \arrow[d, bend right] \\
\vdots \\
B \arrow[d, bend left] \arrow[d, bend right] \\
\vdots \\
N \times I \\
\vdots \\
\end{tikzcd}
\end{center}
Definition

A 2-dimensional extended TQFT is a symmetric monoidal 2-functor \(Z : \text{Bord}_2 \rightarrow \text{Alg}_k^2 \) where \(\text{Alg}_k^2 \) is the symmetric monoidal bicategory of \(k \)-algebras, bimodules, and bimodule maps.

Theorem ([Schommer-Pries, 2009])

There is an equivalence of bicategories \(\mathcal{E}\text{-TQFT} \cong \text{Frob} \).

- The bicategory \(\mathcal{E}\text{-TQFT} \) has 2-dimensional E-TQFTs as objects, symmetric monoidal transformations as 1-morphisms, and symmetric monoidal modifications as 2-morphisms.
- The bicategory Frob has separable symmetric Frobenius algebras as objects, Morita equivalences as 1-morphisms, and isomorphisms of Morita equivalences as 2-morphisms.
Summary of classifications

- Commutative Frobenius algebras
 - 2-dimensional TQFTs
 - Crossed Frobenius G-algebras
 - 2-dimensional HQFTs
- 2-dimensional E-TQFTs
- Separable symmetric Frobenius algebras

- Restriction to constant homotopy classes.
- Restriction to circles and cobordisms between circles.
The main goal

Commutative Frobenius algebras

\[\text{2-dimensional TQFTs} \]

Separated symmetric Frobenius algebras

\[\text{2-dimensional E-TQFTs} \]

Crossed Frobenius G-algebras

\[\text{2-dimensional HQFTs} \]

\[\text{2-dimensional E-HQFTs} \]
Extended equivariant bordism bicategory

Definition

The symmetric monoidal G-equivariant bordism bicategory $\mathcal{X} \text{Bord}_2$ has oriented 0-dimensional compact X-manifolds as objects, oriented X-cobordisms as 1-morphisms and diffeomorphism classes of $\langle 2 \rangle$-X-surfaces relative to boundary as 2-morphisms.

An example of $\langle 2 \rangle$-X-surface (S, f) is shown below as a 2-morphism $(S, f) : (A, p) \to (B, q)$ where $(A, p), (B, q) : (M, g) \to (N, h)$.

![Diagram showing an example of a $\langle 2 \rangle$-X-surface as a 2-morphism]
Extended homotopy quantum field theories

Definition

A 2-dimensional extended HQFT with target $X \simeq K(G, 1)$ is a symmetric monoidal 2-functor

$$Z : XBord_2 \to \text{Alg}_k^2.$$
The main theorem

Theorem (S.)

There is an equivalence of bicategories \mathcal{E}-HQFT$(X) \simeq \text{Frob}^G$.

- The bicategory \mathcal{E}-HQFT(X) has 2-dimensional E-HQFTs with target $X \simeq K(G,1)$ as objects, symmetric monoidal transformations as 1-morphisms, and symmetric monoidal modifications as 2-morphisms.
- The bicategory Frob^G has quasi-biangular G-algebras as objects, G-graded Morita equivalences as 1-morphisms, and isomorphisms of graded Morita equivalences as 2-morphisms.

Definition

A Frobenius G-algebra $(A = \bigoplus_{g \in G} A_g, \beta)$ is quasi-biangular if each A_g is both left and right rank one A_e-module and the principal component A_e is a separable algebra.
The idea of the proof

We generalize the planar decomposition theorem of C. Schommer-Pries to G-planar decomposition theorem. In particular, we add X-manifold data to linear, planar and spatial diagrams of Schommer-Pries and define

- G-linear diagrams
- G-planar diagrams
- G-spatial diagrams.

Using diagrams we define a symmetric monoidal bicategory XB^{PD} which is equivalent to $XBord_2$ and freely generated on a list of generators and relations. Lastly, using coherence theorems for symmetric monoidal 2-functors developed by Schommer-Pries we classify 2-dimensional E-HQFTs.
Definition

A G-linear diagram is a triple (Ψ^G, Γ, S^G) consisting of a 1-dimensional G-graphic Ψ^G, a compatible chambering set Γ, and a G-sheet data S^G.

A 1-dimensional G-graphic Ψ^G consists of finitely many isolated points labeled by cup or cap, finitely many points and G-labeled directed intervals.
A chambering set Γ compatible with Ψ^G consists of isolated points in \mathbb{R} which are disjoint from Ψ^G. Any Ψ^G-compatible chambering set provides open sets called chambers which are given by the complements of points of Ψ^G and points of Γ.
A G-sheet data S^G associated to tuple (Ψ^G, Γ) consists of

- a trivialization of each chamber by a **finite ordered set** and lifts of G-labeled arcs and points using G-graphic,
- injections and permutations between trivializations of neighboring chambers describing gluing data.
For a closed surface Σ, Schommer-Pries stratified jet spaces $J^k(\Sigma, \mathbb{R}^2)$. A generic map $f : \Sigma \to \mathbb{R}^2$ for this stratification can have the following singularities.
G-planar diagrams

Definition

A G-planar diagram is a triple (Φ^G, Γ, S^G) consisting of a 2-dimensional G-graphic Φ^G, a compatible chambering graph Γ, and a G-sheet data S^G.

A 2-dimensional G-graphic Φ^G consists of embedded labeled arcs and points in \mathbb{R}^2, and embedded points and immersed G-labeled arcs.
A chambering graph Γ compatible with Φ^G is a smoothly embedded graph in \mathbb{R}^2 whose vertices are disjoint from Φ^G and have degree either 1 or 3 and edges of Γ are transversal to Φ^G. Any Φ^G-compatible chambering graph Γ provides open sets called chambers which are given by the complement of Γ and the embedded arcs and point of Φ^G.
A G-sheet data associated to tuple (Ψ^G, Γ) consists of

- a trivialization of each chamber by a finite ordered set and lifts of G-labeled arcs and points using G-graphic,
- injections and permutations between trivializations of neighboring chambers describing gluing data.

\[\sigma(1) \quad \sigma(2) \quad \sigma(N) \]

\[g_i \quad g_i \quad g_j \]

\[U_{\beta_1} \quad U_{\beta_2} \quad g_j \]
G-spatial diagrams

Recall that in the bordism bicategory 2-morphisms are considered up to a diffeomorphism. To understand how different planar diagrams of the given surface are related Schommer-Pries stratified jet spaces $J^k(\Sigma \times I, \mathbb{R}^2 \times \mathbb{R})$. A generic map for this stratification can have the following graphics in $\mathbb{R}^2 \times \mathbb{R}$.

<table>
<thead>
<tr>
<th></th>
<th>Fold</th>
<th>Cusp</th>
<th>Morse</th>
<th>Morse Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cusp Inversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kürşat Sözer
Extended HQFTs in dimension 2
IU Bloomington
G-spatial diagrams

Definition

A G-spatial diagram is a triple \((\Delta^G, \Gamma, S^G)\) consisting of a 3-dimensional G-graphic \(\Delta^G\), a compatible chambering foam \(\Gamma\), and a G-sheet data \(S^G\).

A 3-dimensional G-graphic \(\Delta^G\) consists of labeled embedded surfaces, arcs and points in \(\mathbb{R}^2 \times \mathbb{R}\) and embedded points and immersed G-labeled arcs.
Generalizing diagrams to $\langle 2 \rangle$-X-surfaces

A chambering foam compatible with Δ^G is a certain type of 2-dimensional stratified space and it provides open sets called chambers.

A G-sheet data is defined similarly by trivializing chambers of a compatible chambering foam by ordered sets and assignments of injections and permutations between trivializations of neighboring chambers.

G-planar and G-spatial diagrams can be generalized to compact and $\langle 2 \rangle$-X-surfaces using G-linear diagrams on the horizontal boundaries.
Define a relation among G-planar diagrams $(\Phi^G_1, \Gamma_1, S^G_1) \sim (\Phi^G_2, \Gamma_2, S^G_2)$ if there exists a G-spatial diagram (Δ^G, Γ, S^G) whose boundary components give G-planar diagrams $(\Phi^G_1, \Gamma_1, S^G_1)$ and $(\Phi^G_2, \Gamma_2, S^G_2)$.

Theorem (G-planar decomposition)

There is a bijection between equivalence classes of G-planar diagrams and X-diffeomorphism classes of surfaces equipped with homotopy class of map to X.

Question: Why do we need the G-planar decomposition theorem to classify 2-dimensional extended HQFTs?

Answer: Because G-linear and G-planar diagrams give generators for the extended G-equivariant bordism bicategory $XBord_2$ and G-spatial diagrams give relations. In this case the sufficiency of relations corresponds to G-planar decomposition theorem.
The list of generators for $XBord_2$

Generating Objects:

\[+ \bullet \quad - \bullet \]

Generating 1-morphisms:

\[g \]
\[g' \]

Generating 2-morphisms:
The list of generators for $X\text{Bord}_2$

+reflections
The list of relations for $XBord_2$

Relations among 2-morphisms:

$g\ g' = gg'$

$+\text{reflections}$
The list of relations for $XBord_2$

\[g' g = g g' = g' g + \text{reflections} \]
Let \mathcal{C} be a symmetric monoidal (∞, n)-category. Then there is a canonical equivalence of (∞, n)-categories

$$\text{Fun}^\otimes \left(\text{Bord}_n^G, \mathcal{C} \right) \sim \left((\mathcal{C}^{fd})^\sim \right)^{hG}$$

where Fun^\otimes is the (∞, n)-category of symmetric monoidal functors, \mathcal{C}^{fd} is the subcategory of fully dualizable objects with duality data, $(\mathcal{C}^{fd})^\sim$ is the underlying ∞-groupoid and $((\mathcal{C}^{fd})^\sim)^{hG}$ is the space of homotopy G-fixed points given by

$$((\mathcal{C}^{fd})^\sim)^{hG} = \text{Hom}_G(EG, (\mathcal{C}^{fd})^\sim)$$

where EG is the total space of the universal principle G-bundle $p : EG \to BG$.
(\(G \times SO(2)\))-structured Cobordism Hypothesis

Two-dimensional extended HQFTs with target \(X \simeq K(G, 1)\) are equivalent to \((G \times SO(2))\)-structured (fully-)extended 2-dimensional TQFTs by pulling back the universal bundle \(p : EG \to X = BG\) along homotopy class.

Theorem ([Davidovich, 2011])]

Let \(G\) be a finite group and \(k\) be an algebraically closed field of characteristic zero. Then isomorphism classes of homotopy \((G \times SO(2))\)-fixed points in \(((\text{Alg}_{k}^{fd})^{\sim})^{h(G \times SO(2))}\) are \(G\)-equivariant algebras.

Corollary of the main theorem

Let \(G\) be a finite group and \(k\) be an algebraically closed field of characteristic zero. Then \((G \times SO(2))\)-structured Cobordism Hypothesis for fully-extended \((G \times SO(2))\)-structured TQFTs with target \(\text{Alg}_{k}^{2}\) holds true.
Example of 1 and 2-dimensional decompositions of X-torus

X-torus

1D Decomposition

2D Decomposition
References

Lowell Abrams (1996)
Two-dimensional topological quantum field theories and Frobenius algebras
J. Knot Theory Ramifications 5, 569 – 587.

Michael Atiyah (1988)
Topological quantum field theories

Orit Davidovich (2011)
State sums in two dimensional fully extended topological field theories
Ph.D. thesis, The University of Texas at Austin.

Jacob Lurie (2009)
On the classification of topological field theories
https://arxiv.org/abs/0905.0465

Christopher Schommer-Pries (2009)
The classification of two-dimensional extended topological field theories
https://arxiv.org/abs/1112.1000.
Vladimir Turaev (1999)
Homotopy field theory in dimension 2 and group algebras