Reducing the gender gap in the physics classroom

Mercedes Lorenzo
Department of Physics and Division of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138
and IES Universidad Laboral, Avenida de La Mancha, s/n, 02080 Albacete, Spain

Catherine H. Crouch
Department of Physics and Division of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138
and Department of Physics, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081

Eric Mazur
Department of Physics and Division of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138

(Received 26 July 2005; accepted 2 December 2005)

We investigate if the gender gap in conceptual understanding in an introductory university physics course can be reduced by using interactive engagement methods that promote in-class interaction, reduce competition, foster collaboration, and emphasize conceptual understanding. To this end we analyzed data from the introductory calculus-based physics course for non-majors at Harvard University taught traditionally or using different degrees of interactive engagement. Our results show that teaching with certain interactive strategies not only yields significantly increased understanding for both males and females, but also reduces the gender gap. In the most interactively taught courses, the pre-instruction gender gap was gone by the end of the semester. © 2006 American Association of Physics Teachers. [DOI: 10.1119/1.2162549]

I. INTRODUCTION

In the United States, females are underrepresented in science and technology-related courses and careers and their average scores are lower than males on science tests at the secondary and post-secondary level. This gender gap is also reported at the secondary level in 28 countries in Europe, North America, Asia, Oceania, and the Middle East. Although the gender gap has been closing in most scientific and technological fields, the largest gender disparity in both achievement and professional representation remains in physics.

Extensive research on gender differences in science achievement has been carried out since the 1980s. The results of this research suggest that the following teaching strategies help narrow the gender gap:

1. Integration of everyday experiences and interests that are relevant to both genders into the content and context of instruction.
2. Assessment and use of students’ prior knowledge to construct new knowledge.
3. Interactive environments that enhance cooperation and communication in the classroom among the students and between the students and the instructor.
4. Alternation between group discussion and structured teaching. Females perform better when they are able to articulate their thoughts verbally and males perform better when their learning experience is structured.
5. Activities that decrease competitiveness.
6. Diverse and frequent assessment practices and feedback.
7. Activities that foster students’ understanding.
8. Application of physics to a broader world-view.

Some studies suggest that females benefit especially by the use of active pedagogies. Although active engagement benefits both genders, females tend to learn more when they express ideas in words through discussion, whereas males prefer working independently.

The interactive engagement (IE) methods used in this study (Peer Instruction, the Tutorials in Introductory Physics, and cooperative quantitative problem-solving activities) make use of many of the strategies listed above [particularly strategies (3)–(7)]. We therefore investigated if these teaching methods narrow the gender gap in the large calculus-based introductory physics course for non-majors at Harvard University.

II. METHODOLOGY

The introductory calculus-based physics course for non-majors was taught at Harvard from 1990 to 1997 (no data were collected in 1992). This course, which covers Newtonian mechanics, meets twice a week in a large lecture hall for a total of 3 h of instruction and once a week for 1 to 2 h in smaller sections of 15–20 students directed by teaching assistants. During the seven years of the study, the average enrollment in the course was 202; the student gender ratio in the course averaged 1.7 (male/female).

A. Teaching approaches

The teaching approach evolved from traditional lectures to a highly interactive teaching style. In 1990 both the lectures and the sections were taught using a traditional lecture format. In 1991 traditional lectures were replaced by Peer Instruction (PI). Peer Instruction modifies the traditional lecture by alternating between short (10–15 min) mini-lectures and conceptual questions discussed by students in small groups to directly address conceptual difficulties during class
time. Students are expected to read before class about the day’s topic in the textbook, so that they will be better able to participate in these discussions.

Over the following five years, we improved the implementation of PI. In 1993 and 1994, the set of conceptual questions and the in-class questioning/discussion strategy were refined. In 1995 we began using a research-based mechanics text being developed by Mazur. The text introduces concepts before developing the mathematical framework and conceptual obstacles are directly addressed in a real-world context that matches the interests of males and females. Until 1996 we ensured that students read before class by giving multiple-choice reading quizzes at the beginning of class; in 1996 and 1997, students completed written assignments about the reading before class. A more detailed description of Peer Instruction and its past and current implementations is in Ref. 19.

Although the lectures from 1990 to 1995 actively involved students once Peer Instruction was implemented, the weekly 1.5-h section meetings consisted primarily of traditional presentations by a teaching assistant to students seated in rows. In 1996 these traditional sections were replaced with weekly 2-h workshops during which students worked in groups of three or four seated around tables. During the first hour of the workshop, students completed the Tutorials, which emphasize conceptual reasoning and hands-on activities rather than standard quantitative problem solving and provide a structured opportunity for students to discuss concepts with one another. Under the supervision of teaching assistants, the Tutorials help the students construct conceptual models and apply them to real-world situations. The second half of the workshop is devoted to reinforcing the students’ problem-solving skills through cooperative quantitative problem-solving activities similar to those developed by Heller et al.

Table I summarizes the teaching approaches used and classifies the courses studied into three groups: traditional (T), partially interactive (IE1), and fully interactive (IE2).

<table>
<thead>
<tr>
<th>Group</th>
<th>Year</th>
<th>Lectures</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1990</td>
<td>Traditional</td>
<td>Traditional</td>
</tr>
<tr>
<td>IE2</td>
<td>1996–1997</td>
<td>Peer Instruction</td>
<td>Tutorials and cooperative problem solving activities</td>
</tr>
</tbody>
</table>

B. Assessment methods and data collection

To investigate how interactive teaching methods affect the gender gap in conceptual understanding, we used the Force Concept Inventory (FCI). This test is widely used to assess students’ understanding of Newtonian mechanics in introductory physics courses and to evaluate the effect of changes in instructional practice. Students were given 45 min to complete the test, once at the beginning of the semester (pretest) and again three months later after instruction in mechanics was completed (posttest). No pretest data are available for the traditionally taught course.

Between 1990 and 1994 we used the original version of the test consisting of 29 questions. In 1995, the test was revised to eliminate ambiguities. Starting in 1995, we used the revised version, which contains 30 questions. The two versions of the test have 27 questions in common, although some of these questions were slightly reworded. Because the assessment instrument changed slightly during this study, we analyzed the FCI scores by scoring all questions on each version of the test and by only scoring the overlapping 27 questions. The two analyses yield similar results, indicating that the revision of the FCI in 1995 did not affect the results. The statistical analysis presented in this paper is based on the complete set of questions for both test versions.

In addition to the FCI, we also examined scores on the Mechanics Baseline Test (MBT) which we administered just before the final exam. These scores are tabulated in the online supplementary materials. The average gender gap in the MBT scores is less than or similar to the gap found on the FCI posttest for all groups surveyed. Although there is a small post-instruction gender gap for all three groups, the gap in the MBT scores is smallest for the IE2 group (4.8%). In addition, the IE2 group shows the highest MBT scores of the three groups.

We analyzed data only from students who completed the FCI pretest (for IE courses), the FCI posttest, and the MBT, for a total of 1048 students. We focused our analysis on the FCI rather than the MBT, because the FCI directly probes the effects of instruction, was given as a pretest and a posttest, while the MBT was given only as a posttest. Because the grading scheme for the course and the nature of the final examinations changed from year to year, the data from examinations and final grades are not comparable from year to year and were therefore omitted from this study.

III. RESULTS AND DISCUSSION

Table II provides the average FCI pretest score \(S_i \) and posttest score \(S_f \) for males and females, with the corresponding gender gap \((S_i^M - S_i^F) \) and \(p \) values. The average pretest scores for both males and females in the IE courses remained approximately constant over the duration of the study; the year-to-year variations are not statistically significant. Therefore, the differences between groups observed on the posttest scores can be attributed to differences in instruction rather than different student backgrounds. In addition, the pretest gender gap, \(S_i^M - S_i^F \), is statistically significant for each course.

Table II shows that the scores for both genders increase after instruction. In addition, the posttest scores for both genders increase as the level of interactive engagement increases from T to IE1 and then IE2. Both male and female students in the T course score lower than the students in the IE groups on the posttest. According to a study by Henderson et al., administering the pretest does not bias posttest results and so the low posttest scores for the T course cannot be attributed to the absence of a pretest.
Figure 1 shows how the level of interactive engagement affects the gender gap. The average gender gap for each of the three groups (T, IE1, and IE2) is shown for both the pretest and posttest. No pretest data are available for the T course. However, the pretest scores stay essentially constant pretest and posttest. No pretest data are available for the T course. Based on this, the pretest gender gap for the T course is set to zero. The average of pretest scores for the IE courses is used as the T course pretest. Figure 2 shows that the gender gap for the T group is not statistically significant. These results show that the higher the level of interactive engagement in the course, the smaller the gender gap is after instruction.

To further evaluate the impact of each of the three teaching approaches on the students’ performance, we also calculated the class average normalized gain \(g = (\langle S_i \rangle - \langle S_p \rangle) / (100 - \langle S_p \rangle) \) from the FCI scores. The normalized gain accounts for differences in the pretest score by determining what fraction of the total possible gain from pretest to posttest is achieved. The average of pretest scores for the IE courses was used as the T course pretest. Figure 2 shows that \(g \) increases for both genders as the level of interactive engagement in the course is increased. For the IE1 and IE2 groups, the difference in the normalized gain between males and females is not statistically significant; in the IE2 group, both genders achieve the same high normalized gain (0.70 for males and 0.71 for females). The data in Fig. 2 are tabulated in the online supplement along with the p values. We were unable to determine if the gender gap for the T group is statistically significant because the T group did not take the pretest.

According to Hake’s normalized gain classification, both male and female students in the IE2 group fall into the high-gain category, \(g \geq 0.7 \). In contrast, females in the T course...
Almost half is twice that of the males, as shown in the upper panel of Fig. 3. Before instruction, the percentage of low-scoring females in the T course are at the low end of the medium-gain category, $0.3 < (g) < 0.7$. Although the normalized gains in the IE groups are almost the same for both genders, females achieve higher absolute gains than males because their pretest scores are lower than those of the males. The difference between high-scoring females and increase that of high-scoring females than traditionally taught courses.

The reduction or elimination of the gender gap in mechanics in the interactive courses is due to the remarkable improvement in the performance of female students with no observed loss of achievement among the male students. Male students also achieve at a higher level with interactive engagement instruction than with traditional instruction.

We attribute the observed reduction of the gender gap to the use of Peer Instruction, the Tutorials, and cooperative quantitative problem-solving activities. These instructional methods give students opportunities to interact and explain their ideas during both lecture and section, providing frequent feedback to students on their understanding through the conceptual questions and tutorials, alternating between structured teaching and peer discussion, emphasizing conceptual reasoning, promoting collaboration among peers, and creating a less competitive classroom culture. Our results confirm that these instructional methods help reduce the gender gap in physics understanding. We hypothesize that teaching in this fashion provides a learning environment that is good for both male and female students.

IV. CONCLUSIONS

Our study demonstrates that interactive engagement effectively reduces the gender gap in physics performance. Although both genders benefit and achieve similar high normalized gains, females improve their performance most, and overcome a considerable pre-instruction gender disparity. As the attention to conceptual understanding and the level of classroom interactivity and collaboration is increased, the gender gap decreases; in the fully interactive courses, it is entirely eliminated. By creating a classroom environment that benefits both genders, the teaching approach described here improves student understanding and narrows the gender gap in physics education.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Veronica McCauley, Jessica Watkins, Dr. Jessica Rosenberg, Dr. Martin Vogt, and
Iva Maxwell for input on the manuscript; Professor Steve Wang for advice on statistical analysis; and Dr. Suvendra Nath Dutta and Vijay Salagala for technical support. ML gratefully thanks EM and the Division of Engineering and Applied Sciences at Harvard University for the opportunity to visit, and the Consejería de Educación de Castilla-La Mancha (Spain) for its generous support during her leave of absence. Her deepest gratitude goes to her brother Raimundo José for his support, encouragement, and help in all her projects and dreams. This work was supported by a grant from the National Science Foundation.

Electronic mail: ccrouch1@swarthmore.edu

1. Electronic mail: ccrouch1@swarthmore.edu
26. See EPAPS Document No. E-AJPIAS-74-003603 for tables of the Mechanics Baseline Test scores and Force Concept Inventory gains and normalized gains. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).