Heegaard Floer Homology
Lecture 3: Structure of bordered HF homology

Dylan Thurston

Joint with Robert Lipshitz, Peter Ozsváth

arXiv:0810.0687,1003.0598,1005.1248,???
http://www.math.columbia.edu/~dpt/speaking

July 23, 2010, XIX OMGTP, Faro
Outline

- Surfaces
 - Modules
 - Bimodules
 - Computability
 - 4-manifolds
Overview

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed 4-manifold W^4</td>
<td>Invariant $HF(W)$</td>
</tr>
<tr>
<td>3-manifold Y^3</td>
<td>Homology $HF(Y)$</td>
</tr>
<tr>
<td>Surface F</td>
<td>Algebra $A(F)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y = F$</td>
<td>A_∞ module $\widehat{CFA}(Y)$</td>
</tr>
<tr>
<td>Gluing $Y = Y_1 \cup_F Y_2$</td>
<td>Projective module $\widehat{CFD}(Y)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y^3 = F_1 \cup F_2$</td>
<td>$\widehat{CF}(Y) \simeq \widehat{CFA}(Y_1) \widehat{\otimes}_{A(F)} \widehat{CFD}(Y_2)$</td>
</tr>
<tr>
<td>Cobordism $\partial W^4 = -Y_1 \cup Y_2$</td>
<td>Bimodules $\widehat{CFDA}(Y)$, ...</td>
</tr>
<tr>
<td>Map $\widehat{HF}(W) : \widehat{HF}(Y_1) \to \widehat{HF}(Y_2)$</td>
<td></td>
</tr>
<tr>
<td>Geometry</td>
<td>Algebra</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Closed 4-manifold W^4</td>
<td>Invariant $HF(W)$</td>
</tr>
<tr>
<td>3-manifold Y^3</td>
<td>Homology $HF(Y)$</td>
</tr>
<tr>
<td>Parametrized surface F</td>
<td>Algebra $\mathcal{A}(F)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y = F$</td>
<td>\mathcal{A}_∞ module $\widehat{CFA}(Y)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y^3 = F_1 \cup F_2$</td>
<td>Projective module $\widehat{CFD}(Y)$</td>
</tr>
<tr>
<td>Gluing $Y = Y_1 \cup_F Y_2$</td>
<td>$\hat{CF}(Y) \simeq \widehat{CFA}(Y_1) \otimes_{\mathcal{A}(F)} \widehat{CFD}(Y_2)$</td>
</tr>
<tr>
<td>Cobordism $\partial W^4 = -Y_1 \cup Y_2$</td>
<td>Bimodules $\widehat{CFDA}(Y)$, $...$</td>
</tr>
<tr>
<td>Map $\hat{HF}(W) : \hat{HF}(Y_1) \rightarrow \hat{HF}(Y_2)$</td>
<td></td>
</tr>
</tbody>
</table>

Overview
A handle decomposition of a surface F is a way of writing F as

- a disk D_0,
- some handles attached to ∂D_0, and
- a disk D_2 attached to remaining boundary.

We also fix a basepoint on ∂D_0.

Definition

A pointed matched circle Z of genus g is a pairing of the points $\{1, \ldots, 4g\} \subset [0, 4g + 1]$ so that surgery on pairs of matched points yields a connected interval.
Strands algebra $\mathcal{A}(n, k)$

Recall strands algebra $\mathcal{A}(n, k)$ (really a category).

- Idempotents (objects): k-element subsets $S \subset \{1, \ldots, n\}$
- Elements (morphisms): $\text{Mor}(S, T)$ spanned by $\phi : S \xrightarrow{\sim} T$, $\phi(i) \geq i$
- Product: composition
- Differential: sum over smoothings of crossings
- Set double-crossings to 0.
For a pointed matched circle \(\mathcal{Z} \) of genus \(g \), we define \(\mathcal{A}(\mathcal{Z}) \subset \mathcal{A}(4g) = \bigoplus_k \mathcal{A}(4g, k) \).

\(\mathcal{A}(\mathcal{Z}) \) is the subalgebra of sums of diagrams in which, if a diagram with a horizontal strand appears, the diagram with the horizontal strand at the matching position appears with equal weight.

The idempotents of \(\mathcal{A}(\mathcal{Z}) \) correspond to subsets of matched pairs \((2^{2g} \text{ in all rather than } 2^{4g}) \).

\(\mathcal{A}(\mathcal{Z}, i) \) is the subalgebra with \(g + i \) strands.
Properties of $\mathcal{A}(\mathcal{Z})$

- $\mathcal{A}(\mathcal{Z}, -g) \cong \mathbb{F}_2$.

- $\mathcal{A}(\mathcal{Z}, -g + 1)$ has no differential, and is a quiver algebra.

- For \mathcal{Z}, \mathcal{Z}' of same genus, $\mathcal{A}(\mathcal{Z}) \not\cong \mathcal{A}(\mathcal{Z}')$. Derived categories are isomorphic.

- $\mathcal{A}(\mathcal{Z})$ is not \mathbb{Z} graded. It is G-graded for a non-commutative group G.

- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(-\mathcal{Z}, i)^{\text{op}}$.

- $\mathcal{A}(\mathcal{Z}, i)$ is Koszul dual to $\mathcal{A}(\mathcal{Z}, -i)$.

- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(\mathcal{Z}^*, -i)$. ($\mathcal{Z}^*$ is the dual pointed matched circle.)

- $\mathcal{A}(\mathcal{Z})$ is derived equivalent to the “partially wrapped Fukaya category” of F [Auroux].
Properties of $\mathcal{A}(\mathcal{Z})$

- $\mathcal{A}(\mathcal{Z}, -g) \cong \mathbb{F}_2$.
- $\mathcal{A}(\mathcal{Z}, -g + 1)$ has no differential, and is a quiver algebra.
- For $\mathcal{Z}, \mathcal{Z}'$ of same genus, $\mathcal{A}(\mathcal{Z}) \neq \mathcal{A}(\mathcal{Z}')$. Derived categories are isomorphic.
- $\mathcal{A}(\mathcal{Z})$ is not \mathbb{Z} graded. It is G-graded for a non-commutative group G.
- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(-\mathcal{Z}, i)^{\text{op}}$.
- $\mathcal{A}(\mathcal{Z}, i)$ is Koszul dual to $\mathcal{A}(\mathcal{Z}, -i)$.
- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(\mathcal{Z}^*, -i)$. ($\mathcal{Z}^*$ is the dual pointed matched circle.)
- $\mathcal{A}(\mathcal{Z})$ is derived equivalent to the “partially wrapped Fukaya category” of F [Auroux].
Properties of $\mathcal{A}(\mathcal{Z})$

- $\mathcal{A}(\mathcal{Z}, -g) \cong \mathbb{F}_2$.
- $\mathcal{A}(\mathcal{Z}, -g + 1)$ has no differential, and is a quiver algebra.
- For $\mathcal{Z}, \mathcal{Z}'$ of same genus, $\mathcal{A}(\mathcal{Z}) \ncong \mathcal{A}(\mathcal{Z}')$. Derived categories are isomorphic.
- $\mathcal{A}(\mathcal{Z})$ is not \mathbb{Z} graded. It is G-graded for a non-commutative group G.
- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(\mathcal{Z}, -i)^{\text{op}}$.
- $\mathcal{A}(\mathcal{Z}, i)$ is Koszul dual to $\mathcal{A}(\mathcal{Z}, -i)$.
- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(\mathcal{Z}^*, -i)$. ($\mathcal{Z}^*$ is the dual pointed matched circle.)
- $\mathcal{A}(\mathcal{Z})$ is derived equivalent to the “partially wrapped Fukaya category” of F [Auroux].
Properties of $\mathcal{A}(\mathcal{Z})$

- $\mathcal{A}(\mathcal{Z}, -g) \cong \mathbb{F}_2$.

- $\mathcal{A}(\mathcal{Z}, -g + 1)$ has no differential, and is a quiver algebra.

- For \mathcal{Z}, \mathcal{Z}' of same genus, $\mathcal{A}(\mathcal{Z}) \not\cong \mathcal{A}(\mathcal{Z}')$. Derived categories are isomorphic.

- $\mathcal{A}(\mathcal{Z})$ is not \mathbb{Z} graded. It is G-graded for a non-commutative group G.

- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(-\mathcal{Z}, i)^{\text{op}}$.

- $\mathcal{A}(\mathcal{Z}, i)$ is Koszul dual to $\mathcal{A}(\mathcal{Z}, -i)$.

- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(\mathcal{Z}^*, -i)$. ($\mathcal{Z}^*$ is the dual pointed matched circle.)

- $\mathcal{A}(\mathcal{Z})$ is derived equivalent to the “partially wrapped Fukaya category” of F [Auroux].
$\mathcal{A}(\mathcal{Z})$ is not \mathbb{Z}-graded

\begin{align*}
x &= \begin{tikzpicture}[baseline]
\begin{scope}[scale=0.5]
\draw[dashed] (0,0) .. controls (1,1) and (1,-1) .. (0,0);
\draw (0,0) .. controls (-1,1) and (-1,-1) .. (0,0);
\end{scope}
\end{tikzpicture} \\
\end{align*}

\begin{align*}
y &= \begin{tikzpicture}[baseline]
\begin{scope}[scale=0.5]
\draw[dashed] (0,0) .. controls (1,1) and (1,-1) .. (0,0);
\draw (0,0) .. controls (-1,1) and (-1,-1) .. (0,0);
\end{scope}
\end{tikzpicture} \\
\end{align*}

\begin{align*}
x \cdot y &= \begin{tikzpicture}[baseline]
\begin{scope}[scale=0.5]
\draw[dashed] (0,0) .. controls (1,1) and (1,-1) .. (0,0);
\draw (0,0) .. controls (-1,1) and (-1,-1) .. (0,0);
\end{scope}
\end{tikzpicture} \\
\end{align*}

\begin{align*}
\partial y &= \begin{tikzpicture}[baseline]
\begin{scope}[scale=0.5]
\draw[dashed] (0,0) .. controls (1,1) and (1,-1) .. (0,0);
\draw (0,0) .. controls (-1,1) and (-1,-1) .. (0,0);
\end{scope}
\end{tikzpicture} \\
\end{align*}

\begin{align*}
(\partial y) \cdot x &= \begin{tikzpicture}[baseline]
\begin{scope}[scale=0.5]
\draw[dashed] (0,0) .. controls (1,1) and (1,-1) .. (0,0);
\draw (0,0) .. controls (-1,1) and (-1,-1) .. (0,0);
\end{scope}
\end{tikzpicture} \\
\end{align*}

\begin{align*}
x \cdot y &= \partial((\partial y) \cdot x)
\end{align*}
Aside: Non-commutative gradings

Let G be a group, possibly non-commutative.

An algebra A is G-graded if we have a decomposition

$$A = \bigoplus_{g \in G} A_g$$

so that

$$A_g \cdot A_h \subseteq A_{gh}.$$

For $\lambda \in G$ a fixed central element, a differential algebra is G-graded if in addition

$$\partial(A_g) \subseteq A_{\lambda^{-1}g}.$$

$\mathcal{A}(\mathcal{Z})$ is graded by

$$\begin{cases}
\text{a canonical } \mathbb{Z} \text{ central extension of } H_1(F) \\
\text{vector fields on } F \times [0, 1]/\text{isotopy rel } \partial.
\end{cases}$$
Properties of $\mathcal{A}(\mathcal{Z})$

- $\mathcal{A}(\mathcal{Z}, -g) \cong \mathbb{F}_2$.
- $\mathcal{A}(\mathcal{Z}, -g + 1)$ has no differential, and is a quiver algebra.
- For \mathcal{Z}, \mathcal{Z}' of same genus, $\mathcal{A}(\mathcal{Z}) \not\cong \mathcal{A}(\mathcal{Z}')$. Derived categories are isomorphic.
- $\mathcal{A}(\mathcal{Z})$ is not \mathbb{Z} graded. It is G-graded for a non-commutative group G.
- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(\mathcal{-Z}, i)^{\text{op}}$.
- $\mathcal{A}(\mathcal{Z}, i)$ is Koszul dual to $\mathcal{A}(\mathcal{Z}, -i)$.
- $\mathcal{A}(\mathcal{Z}, i) \simeq \mathcal{A}(\mathcal{Z}^*, -i)$. ($\mathcal{Z}^*$ is the dual pointed matched circle.)
- $\mathcal{A}(\mathcal{Z})$ is derived equivalent to the “partially wrapped Fukaya category” of F [Auroux].
Properties of $\mathcal{A}(\mathcal{Z})$

- $\mathcal{A}(\mathcal{Z}, -g) \cong \mathbb{F}_2$.

- $\mathcal{A}(\mathcal{Z}, -g + 1)$ has no differential, and is a quiver algebra.

- For $\mathcal{Z}, \mathcal{Z}'$ of same genus, $\mathcal{A}(\mathcal{Z}) \not\cong \mathcal{A}(\mathcal{Z}')$. Derived categories are isomorphic.

- $\mathcal{A}(\mathcal{Z})$ is not \mathbb{Z} graded. It is G-graded for a non-commutative group G.

- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(-\mathcal{Z}, i)^{\text{op}}$.

- $\mathcal{A}(\mathcal{Z}, i)$ is Koszul dual to $\mathcal{A}(\mathcal{Z}, -i)$.

- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(\mathcal{Z}^*, -i)$. ($\mathcal{Z}^*$ is the dual pointed matched circle.)

- $\mathcal{A}(\mathcal{Z})$ is derived equivalent to the “partially wrapped Fukaya category” of F [Auroux].
Properties of $\mathcal{A}(\mathcal{Z})$

- $\mathcal{A}(\mathcal{Z}, -g) \cong \mathbb{F}_2$.
- $\mathcal{A}(\mathcal{Z}, -g + 1)$ has no differential, and is a quiver algebra.
- For $\mathcal{Z}, \mathcal{Z}'$ of same genus, $\mathcal{A}(\mathcal{Z}) \ncong \mathcal{A}(\mathcal{Z}')$. Derived categories are isomorphic.
- $\mathcal{A}(\mathcal{Z})$ is not \mathbb{Z} graded. It is G-graded for a non-commutative group G.
- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(\mathcal{Z}, -i)^{\text{op}}$.
- $\mathcal{A}(\mathcal{Z}, i)$ is Koszul dual to $\mathcal{A}(\mathcal{Z}, -i)$.
- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(\mathcal{Z}^*, -i)$. ($\mathcal{Z}^*$ is the dual pointed matched circle.)
- $\mathcal{A}(\mathcal{Z})$ is derived equivalent to the “partially wrapped Fukaya category” of F [Auroux].
Properties of $\mathcal{A}(\mathcal{Z})$

- $\mathcal{A}(\mathcal{Z}, -g) \cong \mathbb{F}_2$.
- $\mathcal{A}(\mathcal{Z}, -g + 1)$ has no differential, and is a quiver algebra.
- For \mathcal{Z}, \mathcal{Z}' of same genus, $\mathcal{A}(\mathcal{Z}) \not\cong \mathcal{A}(\mathcal{Z}')$. Derived categories are isomorphic.
- $\mathcal{A}(\mathcal{Z})$ is not \mathbb{Z} graded. It is G-graded for a non-commutative group G.
- $\mathcal{A}(\mathcal{Z}, i) \cong \mathcal{A}(-\mathcal{Z}, i)^{\text{op}}$.
- $\mathcal{A}(\mathcal{Z}, i)$ is Koszul dual to $\mathcal{A}(\mathcal{Z}, -i)$.
- $\mathcal{A}(\mathcal{Z}, i) \simeq \mathcal{A}(\mathcal{Z}^*, -i)$. ($\mathcal{Z}^*$ is the dual pointed matched circle.)
- $\mathcal{A}(\mathcal{Z})$ is derived equivalent to the “partially wrapped Fukaya category” of F [Auroux].
Outline

Surfaces

- Modules

 Bimodules

Computability

4-manifolds
Overview

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed 4-manifold W^4</td>
<td>Invariant $HF(W)$</td>
</tr>
<tr>
<td>3-manifold Y^3</td>
<td>Homology $HF(Y)$</td>
</tr>
<tr>
<td>F</td>
<td>Algebra $A(F)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y = F$</td>
<td>A_∞ module $\widehat{CFA}(Y)$</td>
</tr>
<tr>
<td>Gluing $Y = Y_1 \cup_F Y_2$</td>
<td>Projective module $\widehat{CFD}(Y)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y^3 = F_1 \cup F_2$</td>
<td>$\widehat{CF}(Y) \simeq \widehat{CFA}(Y_1) \otimes_{A(F)} \widehat{CFD}(Y_2)$</td>
</tr>
<tr>
<td>Cobordism $\partial W^4 = -Y_1 \cup Y_2$</td>
<td>Bimodules $\widehat{CFDA}(Y)$, ...</td>
</tr>
<tr>
<td>Map $\widehat{HF}(W) : \widehat{HF}(Y_1) \to \widehat{HF}(Y_2)$</td>
<td></td>
</tr>
</tbody>
</table>
Type D modules

Pointed matched circle $\mathcal{Z} \rightsquigarrow$ Surface $F(\mathcal{Z})$ with marked disk D_0

A bordered 3-manifold is a 3-manifold Y with a homeomorphism $\phi : F(\mathcal{Z}) \to \partial Y$, defined up to isotopy rel D_0.

Corresponding notion of bordered Heegaard diagrams \mathcal{H}, with boundary $\partial \mathcal{H}$ a pointed matched circle.

For \mathcal{H} a bordered Heegaard diagram, $\widehat{\text{CFD}}(\mathcal{H})$ is a left, projective module over $A(-\partial \mathcal{H}, 0)$.

Theorem

If \mathcal{H}_1 and \mathcal{H}_2 represent the same bordered 3-manifold,

$$\widehat{\text{CFD}}(\mathcal{H}_1) \simeq \widehat{\text{CFD}}(\mathcal{H}_2).$$

Can therefore write $\widehat{\text{CFD}}(Y)$ for Y a bordered 3-manifold.
Type A modules

For \mathcal{H} a bordered Heegaard diagram, $\widehat{\text{CFA}}(\mathcal{H})$ is a right, A_∞ module over $A(\partial \mathcal{H}, 0)$.

Theorem

If \mathcal{H}_1 and \mathcal{H}_2 represent the same bordered 3-manifold,

$$\widehat{\text{CFA}}(\mathcal{H}_1) \simeq \widehat{\text{CFA}}(\mathcal{H}_2).$$

A nice (based) Heegaard diagram is one in which every region (except for the one containing the basepoint) is a square or bigon.

Theorem (Sarkar-Wang)

Any 3-manifold has a nice diagram.

Lemma

If \mathcal{H} is nice, then $\widehat{\text{CFA}}(\mathcal{H})$ is a differential module over $A(\mathcal{Z})$.
Overview

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed 4-manifold W^4</td>
<td>Invariant $HF(W)$</td>
</tr>
<tr>
<td>3-manifold Y^3</td>
<td>Homology $HF(Y)$</td>
</tr>
<tr>
<td>F</td>
<td>Algebra $\mathcal{A}(F)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y = F$</td>
<td>\mathcal{A}_∞ module $\widehat{CFA}(Y)$</td>
</tr>
<tr>
<td>Gluing $Y = Y_1 \cup_F Y_2$</td>
<td>Projective module $\widehat{CFD}(Y)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y^3 = F_1 \cup F_2$</td>
<td>$\widehat{CF}(Y) \simeq \widehat{CFA}(Y_1) \widehat{\otimes}_{\mathcal{A}(F)} \widehat{CFD}(Y_2)$</td>
</tr>
<tr>
<td>Cobordism $\partial W^4 = -Y_1 \cup Y_2$</td>
<td>Bimodules $\widehat{CFDA}(Y)$, ...</td>
</tr>
<tr>
<td>Map $\widehat{HF}(W) : \widehat{HF}(Y_1) \rightarrow \widehat{HF}(Y_2)$</td>
<td>Map $\widehat{HF}(W) : \widehat{HF}(Y_1) \rightarrow \widehat{HF}(Y_2)$</td>
</tr>
</tbody>
</table>
Overview

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed 4-manifold W^4</td>
<td>Invariant $HF(W)$</td>
</tr>
<tr>
<td>3-manifold Y^3</td>
<td>Homology $HF(Y)$</td>
</tr>
<tr>
<td>F</td>
<td>Algebra $A(F)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y = F$</td>
<td>A_∞ module $\widehat{CFA}(Y)$</td>
</tr>
<tr>
<td>Gluing $Y = Y_1 \cup_F Y_2$</td>
<td>Projective module $\widehat{CFD}(Y)$</td>
</tr>
<tr>
<td>$\widehat{CF}(Y) \simeq \widehat{CFA}(Y_1) \otimes_{A(F)} \widehat{CFD}(Y_2)$</td>
<td>$\widehat{CF}(Y) \simeq \text{Hom}(\widehat{CFD}(-Y_1), \widehat{CFD}(Y_2))$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y^3 = F_1 \cup F_2$</td>
<td>Bimodules $\widehat{CFDA}(Y)$, \ldots</td>
</tr>
<tr>
<td>Cobordism $\partial W^4 = -Y_1 \cup Y_2$</td>
<td>Map $\widehat{HF}(W) : \widehat{HF}(Y_1) \rightarrow \widehat{HF}(Y_2)$</td>
</tr>
</tbody>
</table>
Pairing theorems

Theorem

If Y_1 is bordered by $F(Z)$ and Y_2 is bordered by $-F(Z)$, then

$$\hat{CF}(Y_1 \cup \partial Y_2) \simeq \hat{CFA}(Y_1) \hat{\otimes}_{A(Z)} \hat{CFD}(Y_2).$$

Theorem

With Y_1, Y_2 as above,

$$\hat{CF}(Y_1 \cup \partial Y_2) \simeq \text{Mor}_{A(Z)}(\hat{CFA}(-Y_2), \hat{CFA}(Y_1))$$
$$\simeq \text{Mor}_{A(-Z)}(\hat{CFD}(-Y_2), \hat{CFD}(Y_1))$$

($\text{Mor}(M, N)$ is a chain complex whose homology is $\text{Ext}(M, N)$.)
Dualities

The two pairing theorems are related by dualities between \widehat{CFA} and \widehat{CFD}.

Theorem

For Y bordered by $F(Z)$,

\[
\text{Mor}_{A(-Z)}(\widehat{CFD}(Y), A(-Z)) \simeq \widehat{CFA}(-Y)
\]
\[
\text{Mor}_{A(Z)}(\widehat{CFA}(Y), A(Z)) \simeq \widehat{CFD}(-Y).
\]

Theorem (Suggested by Auroux)

For Y bordered by $F(Z)$,

\[
\widehat{CFA}(Y, \overline{s}) \simeq \widehat{CFD}(Y, \overline{s}).
\]
Outline

Surfaces

Modules

- Bimodules

Computability

4-manifolds
Overview

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed 4-manifold W^4</td>
<td>Invariant $HF(W)$</td>
</tr>
<tr>
<td>3-manifold Y^3</td>
<td>Homology $HF(Y)$</td>
</tr>
<tr>
<td>F</td>
<td>Algebra $A(F)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y = F$</td>
<td>\mathcal{A}_∞ module $\widehat{CFA}(Y)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y^3 = F_1 \cup F_2$</td>
<td>Projective module $\widehat{CFD}(Y)$</td>
</tr>
<tr>
<td>Gluing $Y = Y_1 \cup_F Y_2$</td>
<td>$\widehat{CF}(Y) \simeq \widehat{CFA}(Y_1) \otimes_{A(F)} \widehat{CFD}(Y_2)$</td>
</tr>
<tr>
<td></td>
<td>$\widehat{CF}(Y) \simeq \text{Hom}(\widehat{CFD}(-Y_1), \widehat{CFD}(Y_2))$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y^3 = F_1 \cup F_2$</td>
<td>Bimodules $\widehat{CFDA}(Y)$, ...</td>
</tr>
<tr>
<td>Cobordism $\partial W^4 = -Y_1 \cup Y_2$</td>
<td>Map $\widehat{HF}(W) : \widehat{HF}(Y_1) \to \widehat{HF}(Y_2)$</td>
</tr>
</tbody>
</table>
Bimodules of various types

An arced, bordered 3-manifold is a 3-manifold Y with two boundary components, parametrized by $F(Z_1)$ and $F(Z_2)$, together with a framed arc connecting the base disks in the two boundary components.

For a Heegaard diagram \mathcal{H} representing an arced, bordered 3-manifold, there are bimodules of various types:

$$\widehat{\text{CFAA}}(\mathcal{H}) A(Z_1,i), A(Z_2,-i),$$

$$A(-Z_1,i) \widehat{\text{CFDA}}(\mathcal{H}) A(Z_2,i),$$

$$A(-Z_1,i), A(-Z_2,-i) \widehat{\text{CFDD}}(\mathcal{H}).$$

Theorem

For \mathcal{H} representing an arced, bordered 3-manifold Y, the bimodules $\widehat{\text{CFAA}}(\mathcal{H})$, $\widehat{\text{CFDA}}(\mathcal{H})$, $\widehat{\text{CFDD}}(\mathcal{H})$ are invariants up to quasi-isomorphism of Y.
Pairing theorems

Theorem

We can glue (arced) bordered 3-manifold (bi)modules in any way that matches an A with a D.
For instance, if $\partial Y_1 = F(Z_1) \cup F(Z_2)$, $\partial Y_2 = -F(Z_2)$,

$$\widehat{CFD}(Y_1 \cup_{F(Z_2)} Y_2) = \widehat{CFDA}(Y_1) \otimes_{A(Z_2)} \widehat{CFD}(Y_2).$$

If $\partial Y_3 = -F(Z_2) \cup F(Z_3)$,

$$\widehat{CFDA}(Y_1 \cup_{F(Z_2)} Y_3) = \widehat{CFDA}(Y_1) \otimes_{A(Z_2)} \widehat{CFDA}(Y_3).$$

There are also Hom-pairing and duality theorems for bimodules. Some of these involve a boundary Dehn twist τ_∂, which is the Serre functor in $\mathcal{A}(Z)$-Mod.

Theorem

$$\text{Mor}_{\mathcal{A}(Z)}(N, M \otimes \widehat{CFDA}(\tau_\partial)) \simeq \text{Mor}_{\mathcal{A}(Z)}(M, N)^*. $$
Mapping class group

As a special case, we can consider \(Y = [0, 1] \times F \), with the two boundaries possibly parametrized differently.

Theorem

\[\text{CFDA}([0, 1] \times F(\mathcal{Z})) \cong \mathcal{A}(\mathcal{Z}), \text{ with both boundaries parametrized by identity.} \]

Corollary

There is a compositional map from the strongly based mapping class group of \(F(\mathcal{Z}) \) to \(\mathcal{A}(\mathcal{Z}) \) bimodules, so \(\text{MCG}_0(F(\mathcal{Z})) \) acts (weakly) on \(\mathcal{A}(\mathcal{Z})\)-Mod.

Corollary

If \(\mathcal{Z} \) and \(\mathcal{Z}' \) have the same genus, \(\mathcal{A}(\mathcal{Z}) \) and \(\mathcal{A}(\mathcal{Z}') \) are derived equivalent.
Theorem

The mapping class group action of a surface of genus g on $A(\mathcal{Z}, -g + 1)$-Mod is faithful.

(Recall $A(\mathcal{Z}, -g) = \mathbb{F}_2$, and $A(\mathcal{Z}, -g + 1)$ has no differential.)

Inspired by Seidel-Thomas ’00: Rank of homology of bimodule counts intersections.

Conjecture

There is a faithful linear representation of the mapping class group.

Unfortunately, our representation presumably decategorifies to a relative for surfaces of Burau representation, which is not faithful.
Overview

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed 4-manifold W^4</td>
<td>Invariant $HF(W)$</td>
</tr>
<tr>
<td>3-manifold Y^3</td>
<td>Homology $HF(Y)$</td>
</tr>
<tr>
<td>F</td>
<td>Algebra $\mathcal{A}(F)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y = F$</td>
<td>\mathcal{A}_∞ module $\widehat{CFA}(Y)$</td>
</tr>
<tr>
<td>Gluing $Y = Y_1 \cup_F Y_2$</td>
<td>Projective module $\widehat{CFD}(Y)$</td>
</tr>
<tr>
<td></td>
<td>$\widehat{CF}(Y) \simeq \widehat{CFA}(Y_1) \otimes_{\mathcal{A}(F)} \widehat{CFD}(Y_2)$</td>
</tr>
<tr>
<td></td>
<td>$\widehat{CF}(Y) \simeq \text{Hom}(\widehat{CFD}(-Y_1), \widehat{CFD}(Y_2))$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y^3 = F_1 \cup F_2$</td>
<td>Bimodules $\widehat{CFDA}(Y)$, …</td>
</tr>
<tr>
<td>Cobordism $\partial W^4 = -Y_1 \cup Y_2$</td>
<td>Map $\widehat{HF}(W) : \widehat{HF}(Y_1) \to \widehat{HF}(Y_2)$</td>
</tr>
</tbody>
</table>
Overview

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed 4-manifold W^4</td>
<td>Invariant $HF(W)$</td>
</tr>
<tr>
<td>3-manifold Y^3</td>
<td>Homology $HF(Y)$</td>
</tr>
<tr>
<td>F</td>
<td>Algebra $\mathcal{A}(F)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y = F$</td>
<td>\mathcal{A}_∞ module $\widehat{CFA}(Y)$</td>
</tr>
<tr>
<td>Gluing $Y = Y_1 \cup_F Y_2$</td>
<td>Projective module $\widehat{CFD}(Y)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y^3 = F_1 \cup F_2$</td>
<td>$\widehat{CF}(Y) \simeq \widehat{CFA}(Y_1) \otimes_{\mathcal{A}(F)} \widehat{CFD}(Y_2)$</td>
</tr>
<tr>
<td>Self-gluing</td>
<td>$\widehat{CF}(Y) \simeq \text{Hom}(\widehat{CFD}(-Y_1), \widehat{CFD}(Y_2))$</td>
</tr>
<tr>
<td>Cobordism $\partial W^4 = -Y_1 \cup Y_2$</td>
<td>Bimodules $\widehat{CFDA}(Y)$, ...</td>
</tr>
<tr>
<td></td>
<td>Hochschild (co)homology</td>
</tr>
<tr>
<td></td>
<td>Map $\widehat{HF}(W): \widehat{HF}(Y_1) \to \widehat{HF}(Y_2)$</td>
</tr>
</tbody>
</table>
Hochschild (co)homology

Hochschild homology in a TQFT is typically related to self-gluing. Idea:

\[HH_* (A M_A) = H_* (\text{Tor}_{A \otimes A^{op}} (AA_A, A M_A)) \]

For \(Y \) an arced, bordered 3-manifold param. by \(\mathcal{Z} \) and \(-\mathcal{Z}\). The open book decomposition \((Y^\circ, K)\) is obtained by gluing the two boundary components, doing surgery on framed knot coming from the framed arc in \(Y \), retaining the core \(K \) of the surgery.

Theorem

For \(Y \) an arced, bordered 3-mfld as above,

\[HH_* (\widehat{\text{CFDA}}(Y)) \simeq \widehat{\text{CFK}}(Y^\circ, K). \]
Outline

Surfaces

Modules

Bimodules

- Computability

4-manifolds
Everything is entirely computable! Especially the \mathcal{A}_∞ modules.

$$\sum_i \dim(H_*(\mathcal{A}(\mathcal{Z}, i))) =$$

$$\begin{cases} T^{-2} + 32 T^{-1} + 98 + 32 T + T^2 & \mathcal{Z} \text{ split, genus 2} \\ T^{-2} + 32 T^{-1} + 70 + 32 T + T^2 & \mathcal{Z} \text{ antipodal, genus 2} \end{cases}$$

In a genus 3 example, get dimension 1224 in middle dimension.

Computing pairings by computing Hom-spaces multiplies by dimension of the algebra.

Computing pairing $\widehat{\text{CFA}} \otimes \widehat{\text{CFD}}$ has a model which does not increase rank at all.

For \mathcal{A}_∞ modules allows passing to homology.
Computing in practice

Enough to find invariants of

- handlebodies and
 - generators of mapping class group(oid).

This can be done.

Computations can be done in practice for genus 2.
Outline

Surfaces

Modules

Bimodules

Computability

» 4-manifolds
Overview

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed 4-manifold W^4</td>
<td>Invariant $\hat{HF}(W)$</td>
</tr>
<tr>
<td>3-manifold Y^3</td>
<td>Homology $\hat{HF}(Y)$</td>
</tr>
<tr>
<td>F</td>
<td>Algebra $\mathcal{A}(F)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y = F$</td>
<td>\mathcal{A}_∞ module $\hat{CFA}(Y)$</td>
</tr>
<tr>
<td>Gluing $Y = Y_1 \cup_F Y_2$</td>
<td>Projective module $\hat{CFD}(Y)$</td>
</tr>
<tr>
<td>$\hat{CF}(Y) \simeq \hat{CFA}(Y_1) \otimes_{\mathcal{A}(F)} \hat{CFD}(Y_2)$</td>
<td>$\hat{CF}(Y) \simeq \text{Hom}(\hat{CFD}(-Y_1), \hat{CFD}(Y_2))$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y^3 = F_1 \cup F_2$</td>
<td>Bimodules $\hat{CFDA}(Y)$, \ldots</td>
</tr>
<tr>
<td>Self-gluing</td>
<td>Hochschild (co)homology</td>
</tr>
<tr>
<td>Cobordism $\partial W^4 = -Y_1 \cup Y_2$</td>
<td>Map $\hat{HF}(W) : \hat{HF}(Y_1) \to \hat{HF}(Y_2)$</td>
</tr>
</tbody>
</table>
Computing 4-manifold invariants

One approach to computing 4-manifold invariants: for T_0 and T_∞ the 0-framed and ∞-framed solid torus, respectively, compute a cobordism

$$\widehat{HF}(D^4) : \widehat{CFD}(T_0) \to \widehat{CFD}(T_\infty).$$

This works.

Easier approach: Use composition map

$$\text{Mor}(\widehat{CFD}(Y_2), \widehat{CFD}(Y_3)) \otimes \text{Mor}(\widehat{CFD}(Y_1), \widehat{CFD}(Y_2)) \to \text{Mor}(\widehat{CFD}(Y_1), \widehat{CFD}(Y_3))$$

where Y_1, Y_2, Y_3 all parametrized by \mathcal{Z}. This is a map

$$\widehat{CF}(-Y_2 \cup \partial Y_3) \otimes \widehat{CF}(-Y_1 \cup \partial Y_2) \to \widehat{CF}(-Y_1 \cup \partial Y_3).$$

Theorem

This is the cobordism map for a pair-of-pants cobordism.