Heegaard Floer Homology
Lecture 2: Bordered HF homology, a toy model

Dylan Thurston
Joint with Robert Lipshitz, Peter Ozsváth

arXiv:0810.0695
http://www.math.columbia.edu/~dpt/speaking

July 21, 2010, XIX OMGTP, Faro
Outline

- **TQFT setup**

 Splitting diagrams

 The algebra

 Engineering \mathcal{A}
Extending down a dimension

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed 4-manifold W^4</td>
<td>Invariant $HF(W, s)$</td>
</tr>
<tr>
<td>3-manifold Y^3</td>
<td>Homology $HF(Y, s)$</td>
</tr>
<tr>
<td>4-manifold w/ $\partial W^4 = Y$</td>
<td>$HF(W) \in HF(Y)$</td>
</tr>
<tr>
<td>Surface F</td>
<td>Algebra $A(F)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y = F$</td>
<td>Module $CF(Y)$ over $A(F)$</td>
</tr>
<tr>
<td>$Y = Y_1 \cup_F Y_2$</td>
<td>$CF(Y) \simeq CF(Y_1) \otimes_{A(F)} CF(Y_2)$</td>
</tr>
</tbody>
</table>

Benefits:
- Computability (theoretical)
- Computability (practical)
- Axioms
Extending down a dimension

Have: Extend HF as a TQFT down a dimension

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed 4-manifold W^4</td>
<td>Invariant $HF(W, s)$</td>
</tr>
<tr>
<td>3-manifold Y^3</td>
<td>Homology $HF(Y, s)$</td>
</tr>
<tr>
<td>4-manifold w/ $\partial W^4 = Y$</td>
<td>$HF(W) \in HF(Y)$</td>
</tr>
<tr>
<td>Surface F</td>
<td>Differential algebra $A(F)$</td>
</tr>
<tr>
<td>3-manifold w/ $\partial Y = F$</td>
<td>Differential, A_∞ module $\widehat{CFA}(Y)$</td>
</tr>
<tr>
<td>$Y = Y_1 \cup_F Y_2$</td>
<td>Differential projective module $\widehat{CFD}(Y)$</td>
</tr>
</tbody>
</table>

$\widehat{CF}(Y) \simeq \widehat{CFA}(Y_1) \widehat{\otimes}_{A(F)} \widehat{CFD}(Y_2)$

Notes:
- Two versions of modules, left and right actions
- Disconnected surfaces (etc.) behave differently
- Only \widehat{HF} so far
- Everything graded
Decategorifying

What happens when we decategorify?

Invariants $HF(W^4)$ \rightarrow \emptyset

Homology $HF(Y^3)$ \rightarrow Invariant

Algebra $\mathcal{A}(F^2)$ \rightarrow Abelian group

Module $CF(Y^3)$ \rightarrow Elt. of Grothendieck group

$CF(Y_1) \otimes_{\mathcal{A}(F)} CF(Y_2)$ \rightarrow Pairing of Grothendieck groups

Right hand side looks like a 3D TQFT. (Presumably this is like a Reshetikhin-Turaev TQFT, but this has not been worked out.)

Slogan

Categorification is going up a dimension.
Comparison: Reshetikhin-Turaev categorification

- Higher-dimensional invariants are better understood.
- Still looking for convincing algebraic/geometric background. Don’t have anything like Grassmannians.
- We need differentials in the algebra. Homological direction is built in.
- Best developed for surfaces/3-manifolds (rather than tangles).
- Related to $GL(1|1)$ supergroup. This may cause some of the difficulties above.
- Tensor product of representations would be another level of structure: connect sum of surfaces.
Outline

- TQFT setup
 - Splitting diagrams
- The algebra
- Engineering \mathcal{A}
Splitting Heegaard diagrams

Recall that HF homology is defined based on Heegaard diagrams.

Split the diagram into two by stretching along a neck intersecting only α circles.

Need to keep track of differentials that cross the boundary.
Splitting Heegaard diagrams

Recall that HF homology is defined based on Heegaard diagrams.

Split the diagram into two by stretching along a neck intersecting only α circles.

Need to keep track of differentials that cross the boundary.
Splitting Heegaard diagrams

Recall that HF homology is defined based on Heegaard diagrams.

Split the diagram into two by stretching along a neck intersecting only α circles.

Need to keep track of differentials that cross the boundary.
A grid diagram represents a knot. A planar diagram P is a square grid with blocks. Do not identify sides. Chain complex $CF(P)$:
- Generators given by permutations
- Differential counts empty rectangles (not wrapping)
- Not an invariant of anything
Toy model: Planar diagrams

A grid diagram represents a knot. A planar diagram P is a square grid with blocks. Do not identify sides.

Chain complex $CF(P)$:

- Generators given by permutations
- Differential counts empty rectangles (*not* wrapping)
- Not an invariant of anything
A grid diagram represents a knot. A planar diagram P is a square grid with blocks. Do not identify sides.

Chain complex $\text{CF}(P)$:

- Generators given by permutations
- Differential counts empty rectangles (not wrapping)
- Not an invariant of anything
A grid diagram represents a knot. A planar diagram P is a square grid with blocks. Do not identify sides.

Chain complex $CF(P)$:

- Generators given by permutations
- Differential counts empty rectangles (not wrapping)
- Not an invariant of anything
Toy model: Planar diagrams

A grid diagram represents a knot. A planar diagram P is a square grid with blocks. Do not identify sides.

Chain complex $CF(P)$:

- Generators given by permutations
- Differential counts empty rectangles (not wrapping)
- Not an invariant of anything
Want to split planar diagrams in two: \(P = P_1 \cup P_2 \).

Associate modules \(CPA(P_1) \), \(CPD(P_2) \)

\[
CP(P) = CPA(P_1) \otimes CPD(P_2)
\]

\(CPA(P_1) \) is a right differential module. Interactions on boundary encoded in algebra action.

\(CPD(P_2) \) is a left, projective module. Interactions on boundary encoded in differential.

Tensor product is nice since \(CPD(P_2) \) is projective.
Want to split planar diagrams in two:
\[P = P_1 \cup P_2. \]

Associate modules \(CPA(P_1), \; CPD(P_2) \)

\[CP(P) = CPA(P_1) \otimes CPD(P_2) \]

\(CPA(P_1) \) is a right differential module. Interactions on boundary encoded in algebra action.

\(CPD(P_2) \) is a left, projective module. Interactions on boundary encoded in differential.

Tensor product is nice since \(CPD(P_2) \) is projective.
Outline

TQFT setup

Splitting diagrams

- The algebra

Engineering \mathcal{A}
Defining a (naive) version of strands algebra $\tilde{A}(n, k)$ (really a category).

- **Objects (idempotents):**
 - k-element subsets $S \subseteq \{1, \ldots, n\}$
- **Elements (morphisms):**
 - $\text{Mor}(S, T)$ spanned by $\phi : S \to T$, $\phi(i) \geq i$
- **Product:** composition
- **Differential:** sum over smoothings of crossings

Naive algebra $\tilde{A}(n, k)$
Naive algebra $\tilde{A}(n, k)$

Defining a (naive) version of strands algebra $\tilde{A}(n, k)$ (really a category).

- Objects (idempotents): k-element subsets $S \subseteq \{1, \ldots, n\}$
- Elements (morphisms): $\text{Mor}(S, T)$ spanned by $\phi : S \rightarrow T$, $\phi(i) \geq i$
- Product: composition
- Differential: sum over smoothings of crossings
Naive algebra \(\tilde{A}(n, k) \)

Defining a (naive) version of strands algebra \(\tilde{A}(n, k) \) (really a category).

- **Objects (idempotents):**
 - \(k \)-element subsets
 - \(S \subseteq \{1, \ldots, n\} \)
- **Elements (morphisms):**
 - \(\text{Mor}(S, T) \) spanned by
 - \(\phi : S \to T, \phi(i) \geq i \)
- **Product:** composition
- **Differential:** sum over smoothings of crossings
Defining a (naive) version of strands algebra $\tilde{A}(n, k)$ (really a category).

- Objects (idempotents):
 - k-element subsets $S \subset \{1, \ldots, n\}$
- Elements (morphisms):
 - $\text{Mor}(S, T)$ spanned by
 - $\phi : S \to T$, $\phi(i) \geq i$
- Product: composition
- Differential: sum over smoothings of crossings
Strands algebra $\mathcal{A}(n, k)$

$\tilde{\mathcal{A}}(n, k)$ has a filtration by number of crossings.
$\mathcal{A}(n, k)$ is the associated graded algebra.

- Product is 0 if it introduces a double-crossing.
- Differential: likewise.

Related to switching to nilHecke algebra (but with a differential).
Strands algebra $\mathcal{A}(n, k)$

$\mathcal{A}(n, k)$ has a filtration by number of crossings.
$\mathcal{A}(n, k)$ is the associated graded algebra.

- Product is 0 if it introduces a double-crossing.
- Differential: likewise.

Related to switching to nilHecke algebra (but with a differential).
Strands algebra $\mathcal{A}(n, k)$

$\mathcal{A}(n, k)$ has a filtration by number of crossings.
$\mathcal{A}(n, k)$ is the associated graded algebra.

- Product is 0 if it introduces a double-crossing.
- Differential: likewise.

Related to switching to nilHecke algebra (but with a differential).
Properties of \mathcal{A}

$\mathcal{A}(n, k)$ is ...

- finite-dimensional;
- Koszul dual to $\mathcal{A}(n, n - k)$ (in suitable sense); and
- very simple when $k = 1$.

The actual algebra $\mathcal{A}(F)$ (for non-toy model) is ...

- an idempotent restriction of $\mathcal{A}(n, k)$,
- incorporates structure of the surface,
- a quiver algebra when $k = 1$, and
- not formal in general (not equivalent to its homology).
Outline

- TQFT setup
- Splitting diagrams
- The algebra
 - Engineering A
A generator of a partial planar diagram is a subset x of the intersections with
- one element per vertical strand;
- at most one element per horizontal strand.
To form a complete generator, the set of occupied horizontal strands must be complementary on left and right.
For x a generator, define
- $I_A(x) =$ set of horizontal strands occupied in x
- $I_D(x) =$ complement of $I_A(x)$
So idempotents in \mathcal{A} correspond to subsets of $\{1, \ldots, n\}$, and I_A and I_D are the idempotents of generators in CPA and CPD.
From rectangles to chords

Must arrange that $CPA(P_1) \otimes CPD(P_2)$ counts all empty rectangles in P.

For rects on left or right, include a term in differential on appropriate side. For rects crossing boundary, need the algebra.

We have an algebra element associated to possible intersections of rectangles with the boundary. $CPD(P_2)$ is a projective module generated over \mathcal{A} by generators. Differential counts half-rectangles. $CPA(P_1)$ is a module generated over \mathbb{F}_2 by generators. Algebra action counts half-rectangles. Combination counts rectangles across boundary in tensor product.
From rectangles to chords

Must arrange that $CPA(P_1) \otimes CPD(P_2)$ counts all empty rectangles in P. For rects on left or right, include a term in differential on appropriate side. For rects crossing boundary, need the algebra.

We have an algebra element associated to possible intersections of rectangles with the boundary. $CPD(P_2)$ is a projective module generated over A by generators. Differential counts half-rectangles. $CPA(P_1)$ is a module generated over \mathbb{F}_2 by generators. Algebra action counts half-rectangles. Combination counts rectangles across boundary in tensor product.
From rectangles to chords

Must arrange that $CPA(P_1) \otimes CPD(P_2)$ counts all empty rectangles in P. For rects on left or right, include a term in differential on appropriate side. For rects crossing boundary, need the algebra.

We have an algebra element associated to possible intersections of rectangles with the boundary. $CPD(P_2)$ is a projective module generated over \mathcal{A} by generators. Differential counts half-rectangles. $CPA(P_1)$ is a module generated over \mathbb{F}_2 by generators. Algebra action counts half-rectangles. Combination counts rectangles across boundary in tensor product.
From rectangles to chords

Must arrange that $CPA(P_1) \otimes CPD(P_2)$ counts all empty rectangles in P. For rects on left or right, include a term in differential on appropriate side. For rects crossing boundary, need the algebra.

We have an algebra element associated to possible intersections of rectangles with the boundary.

$CPD(P_2)$ is a projective module generated over \mathcal{A} by generators. Differential counts half-rectangles. $CPA(P_1)$ is a module generated over \mathbb{F}_2 by generators. Algebra action counts half-rectangles. Combination counts rectangles across boundary in tensor product.
From rectangles to chords

Must arrange that $CPA(P_1) \otimes CPD(P_2)$ counts all empty rectangles in P. For rects on left or right, include a term in differential on appropriate side. For rects crossing boundary, need the algebra.

We have an algebra element associated to possible intersections of rectangles with the boundary.

$CPD(P_2)$ is a projective module generated over \mathcal{A} by generators. Differential counts half-rectangles.

$CPA(P_1)$ is a module generated over \mathbb{F}_2 by generators. Algebra action counts half-rectangles.

Combination counts rectangles across boundary in tensor product.
From rectangles to chords

Must arrange that $CPA(P_1) \otimes CPD(P_2)$ counts all empty rectangles in P. For rects on left or right, include a term in differential on appropriate side. For rects crossing boundary, need the algebra.

We have an algebra element associated to possible intersections of rectangles with the boundary.

$CPD(P_2)$ is a projective module generated over \mathcal{A} by generators. Differential counts half-rectangles.

$CPA(P_1)$ is a module generated over \mathbb{F}_2 by generators. Algebra action counts half-rectangles. Combination counts rectangles across boundary in tensor product.
From rectangles to chords

Must arrange that \(CPA(P_1) \otimes CPD(P_2) \) counts all empty rectangles in \(P \).
For rects on left or right, include a term in differential on appropriate side.
For rects crossing boundary, need the algebra.
We have an algebra element associated to possible intersections of rectangles with the boundary.
\(CPD(P_2) \) is a projective module generated over \(\mathcal{A} \) by generators.
Differential counts half-rectangles.
\(CPA(P_1) \) is a module generated over \(\mathbb{F}_2 \) by generators. Algebra action counts half-rectangles.
Combination counts rectangles across boundary in tensor product.
From rectangles to chords

Must arrange that $CPA(P_1) \otimes CPD(P_2)$ counts all empty rectangles in P. For rects on left or right, include a term in differential on appropriate side. For rects crossing boundary, need the algebra.

We have an algebra element associated to possible intersections of rectangles with the boundary. $CPD(P_2)$ is a projective module generated over \mathcal{A} by generators. Differential counts half-rectangles. $CPA(P_1)$ is a module generated over \mathbb{F}_2 by generators. Algebra action counts half-rectangles. Combination counts rectangles across boundary in tensor product.
From rectangles to chords

Must arrange that \(\text{CPA}(P_1) \otimes \text{CPD}(P_2) \) counts all empty rectangles in \(P \).

For rects on left or right, include a term in differential on appropriate side.

For rects crossing boundary, need the algebra.

We have an algebra element associated to possible intersections of rectangles with the boundary.

\(\text{CPD}(P_2) \) is a projective module generated over \(\mathcal{A} \) by generators.

Differential counts half-rectangles.

\(\text{CPA}(P_1) \) is a module generated over \(\mathbb{F}_2 \) by generators. Algebra action counts half-rectangles.

Combination counts rectangles across boundary in tensor product.
From rectangles to chords

Must arrange that $CPA(P_1) \otimes CPD(P_2)$ counts all empty rectangles in P. For rects on left or right, include a term in differential on appropriate side. For rects crossing boundary, need the algebra.

We have an algebra element associated to possible intersections of rectangles with the boundary. $CPD(P_2)$ is a projective module generated over \mathcal{A} by generators. Differential counts half-rectangles. $CPA(P_1)$ is a module generated over \mathbb{F}_2 by generators. Algebra action counts half-rectangles. Combination counts rectangles across boundary in tensor product.
From rectangles to chords

Must arrange that $CPA(P_1) \otimes CPD(P_2)$ counts all empty rectangles in P. For rects on left or right, include a term in differential on appropriate side. For rects crossing boundary, need the algebra. We have an algebra element associated to possible intersections of rectangles with the boundary. $CPD(P_2)$ is a projective module generated over \mathcal{A} by generators. Differential counts half-rectangles. $CPA(P_1)$ is a module generated over \mathbb{F}_2 by generators. Algebra action counts half-rectangles. Combination counts rectangles across boundary in tensor product.
Recall that $\partial^2 = 0$ for grid/planar diagrams involves decomposing regions in two ways. We need to account for this cancellation as it crosses the boundary. Get relations that are . . .

- always true for $CPA(P_1)$;
- necessary to get $\partial^2 = 0$ for $CPD(P_2)$.

We’ll look at $CPD(P_2)$ side.
Recall that $\partial^2 = 0$ for grid/planar diagrams involves decomposing regions in two ways. We need to account for this cancellation as it crosses the boundary.

Get relations that are . . .

- always true for $CPA(P_1)$;
- necessary to get $\partial^2 = 0$ for $CPD(P_2)$.

We’ll look at $CPD(P_2)$ side.
Recall that $\partial^2 = 0$ for grid/planar diagrams involves decomposing regions in two ways. We need to account for this cancellation as it crosses the boundary. Get relations that are...

- always true for $CPA(P_1)$;
- necessary to get $\partial^2 = 0$ for $CPD(P_2)$.

We’ll look at $CPD(P_2)$ side.
Relation 1: commutativity

From disjoint rectangles, get commutativity of disjoint chords.
From L-shaped region, get composition of strands.
From L-shaped region facing other way, get a differential.
From L-shaped region facing other way, get a differential.
From L-shaped region facing other way, get a differential.