1. We’ve seen that S^1 is a $K(\mathbb{Z}, 1)$, and so homotopy classes of maps from a CW complex X to S^1 are in bijection with elements of the singular cohomology $H^1(X, \mathbb{Z})$. Give a more direct proof of this fact.

2. Give an example of a space X for which the above bijection is not true. You may find it useful to think about the topologist’s sine curve, the graph of the function $\sin(1/x)$ for $x \in [0, \infty)$, and build from there.

3. Show that $\pi_1(SL(n)) \cong \pi_1(SO(n)) \cong \mathbb{Z}/2$ for $n \geq 3$. (Use the fact that homotopy groups of $SO(n)$ stabilize.)

4. For an n-dimensional oriented real vector bundle η over a space X, consider the space of oriented orthonormal frames $OV(\eta)$ as a fiber bundle over X, with fiber $SO(n)$. Show that in the Serre spectral sequence of this fibration with $\mathbb{Z}/2$ coefficients, the map from $H_2(X; \mathbb{Z}/2)$ to $H_1(SO(n); \mathbb{Z}/2)$ is dual to the second Stiefel-Whitney class w_2.

5. The double cover of $SO(n)$ is called $Spin(n)$, and an oriented vector bundle η is said to have a spin structure if the frame bundle $OV(\eta)$ has a double cover which is non-trivial on the fiber (so that the fiber is $Spin(n)$). Show that η has a spin structure iff $w_2(\eta) = 0$. (Compare to the earlier result that η is orientable iff $w_1(\eta) = 0$.)

6. Recall that a Moore space $M(G, n)$ is a space whose only non-trivial reduced homology group is G in dimension n. Define $\mu_n(X; G)$ to be based homotopy classes of maps from $M(G, n)$ to X. (These are used in the construction of homotopy groups with coefficients.) Show that $\mu_n(X; G)$ has a natural group structure for $n > 1$, and is Abelian for $n > 2$.