To receive full credit, you must explain your answers.
No calculators of any type are allowed.

(1) Let P_1, P_2, P_3 be the planes defined by the equations below.

$P_1 : x + y = 1$
$P_2 : y - z = 2$
$P_3 : y + z = -1$

(a) Find the line of intersection between P_1 and P_2.

Answer. The line of intersection is parallel to the vector $(1, 1, 0) \times (0, 1, -1) = (-1, 1, 1)$. One point on the line is at $x = 0, y = 1, z = -1$, so the line is $(x, y, z) = (0, 1, -1) + t(-1, 1, 1)$ or

\[
\begin{align*}
x &= -t \\
y &= 1 + t \\
z &= -1 + t
\end{align*}
\]

(b) Find the point of intersection between the line you found in part (a) and P_3.

Answer. Probably the easiest way to do this is to find the value of t that also satisfies the third equation:

\[
-1 = y + z \\
= (1 + t) + (-1 + t) \\
t = -1/2 \\
x = -t = 1/2 \\
y = 1 + t = 1/2 \\
z = -1 + t = -3/2.
\]

(Check: This point (1/2, 1/2, -3/2) satisfies all of the original equations.)

(c) Find the z coordinate of the same point (the point of intersection of $P_1, P_2,$ and P_3) using Cramer’s rule.

Answer. We are trying to solve the simultaneous equations

\[
\begin{align*}
x + y &= 1 \\
y - z &= 2 \\
y + z &= -1
\end{align*}
\]
Cramer’s rule tells us that the x-coordinate is

\[
x = \frac{\begin{vmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{vmatrix}} = \frac{1}{2}
\]

(2) Let $\mathbf{v} = \langle 1, 1, 0 \rangle$, and let \mathbf{w} be a vector of length 3 at 60° counterclockwise from \mathbf{v}, also in the xy plane.

(a) What is $\mathbf{v} \cdot \mathbf{w}$?

Answer. $\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}||\mathbf{w}| \cos \theta = \sqrt{2} \cdot 3 \cdot \frac{1}{2} = 3\sqrt{2}/2$

(b) What is $\mathbf{v} \times \mathbf{w}$?

Answer. The length of $\mathbf{v} \times \mathbf{w}$ is given by $|\mathbf{v} \times \mathbf{w}| = |\mathbf{v}||\mathbf{w}| \sin \theta = \sqrt{2} \cdot 3 \cdot \frac{\sqrt{3}}{2} = 3\sqrt{6}/2$. The direction of the cross product is always perpendicular to the two vectors. Since both vectors are in the xy plane, the cross product is along the z axis, either positive or negative. The direction of the cross product is given by the right hand rule, which in this case means it points along the positive z axis. Combining all this, we have:

$\mathbf{v} \times \mathbf{w} = \langle 0, 0, 3\sqrt{6}/2 \rangle$.

(c) What is \mathbf{w}?

Answer. This is most easily solved in polar coordinates (ignoring the z axis, which is 0 for everything). \mathbf{v} has a length of $\sqrt{2}$ and an angle of 45°. From the information given, \mathbf{w} has a length of 3 and an angle of $45° + 60° = 105°$. Thus \mathbf{w} is given by

$\mathbf{w} = \langle r \cos \theta, r \sin \theta, 0 \rangle = \langle 3 \cos 105°, 3 \sin 105°, 0 \rangle$.

(3) Let $f(x,y) = xe^{x+y}$.

(a) Let $\mathbf{u} = \langle 1/\sqrt{2}, 1/\sqrt{2} \rangle$. Find the directional derivative $D_{\mathbf{u}}f(1,-1)$.

(b) Find $\nabla f(1,-1)$.

Answer. We first find the gradient:

$\nabla f(1,-1) = \langle \frac{\partial f}{\partial x}(1,-1), \frac{\partial f}{\partial y}(1,-1) \rangle$

$= \langle (1 + x)e^{x+y}, xe^{x+y} \rangle|_{x=1,y=-1}$

$= \langle 2, 1 \rangle$.

Then the directional derivative is given by

$D_{\mathbf{u}}f(1,-1) = \mathbf{u} \cdot \nabla f(1,-1)$

$= \frac{3}{\sqrt{2}}$.

(c) Find the tangent plane to the graph of \(f \) at \((x, y) = (1, -1)\).

Answer. First note that \(z_0 = f(x_0, y_0) = f(1, -1) = 1 \). The tangent plane is given by

\[
z - z_0 = f_x(x_0, y_0) \cdot (x - x_0) + f_y(x_0, y_0) \cdot (y - y_0)
\]

\[
z - 1 = 2(x - 1) + 1(y + 1).
\]

(d) Use the linear approximation to \(f \) near \((1, -1)\) to approximate \(f(1.1, -1.2) \).

Answer. The linear approximation is the value given by the tangent plane above: for \(x, y \) near \((1, -1)\),

\[
f(x, y) \approx z = 1 + 2(x - 1) + (y + 1)
\]

\[
f(1.1, -1.2) \approx 1 + 2(1.1 - 1) + (-1.2 + 1) = 1 + 0.2 - 0.2 = 1.
\]

(4) (a) Find the tangent plane to the surface \(z^2 = x^2 + 2y^2 + 3 \) at the point \((2, 1, 3)\).

Answer. The surface is a level surface of the function \(F(x, y, z) = -x^2 - 2y^2 + z^2 \). The normal to the surface is given by the gradient of \(F \):

\[
\mathbf{n} = \nabla F(2, 1, 3) = \langle -2x, -4y, 2z \rangle|_{(2,1,3)} = \langle -4, -4, 6 \rangle
\]

Thus the plane is given by

\[
\langle -4, -4, 6 \rangle \cdot \langle x - 2, y - 1, z - 3 \rangle = 0.
\]

Note. An alternative way to solve this problem is to solve for \(z \) in terms of \(x \) and \(y \) and proceed as in problem 3. You are responsible for both methods.

(b) If \(z = xy^3 + x^4 + xy \) and \(x = t + 1, y = t^2 \), find \(dz/dt \) at \(t = 1 \).

Answer. Note that at \(t = 1, x = 2 \) and \(y = 1 \). We compute using the chain rule:

\[
\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}
\]

\[
= (y^3 + 4x^3 + y)(1) + (3xy^2 + x)(2t)
\]

\[
= (1 + 4 \cdot 8 + 1)(1) + (3 \cdot 2 \cdot 1 + 2)(2)
\]

\[
= 34 + 16 = 50.
\]

(5) Find the critical points of the function

\[
f(x, y) = (x^3 - 3x)e^{-y^2}
\]

and classify whether they are local minimima, maxima, or saddle points.
Answer. First we find the partial derivatives:

\[
\begin{align*}
 f_x &= (3x^2 - 3)e^{-y^2} \\
 f_y &= (x^3 - 3x)e^{-y^2}(-2y) \\
 f_{xx} &= 6xe^{-y^2} \\
 f_{xy} &= (3x^2 - 3)e^{-y^2}(-2y) \\
 f_{yy} &= (x^3 - 3x)e^{-y^2}(4y^2 - 2).
\end{align*}
\]

The critical points are the values where \(f_x = f_y = 0 \):

\[
\begin{align*}
 f_x &= (3x^2 - 3)e^{-y^2} = 0 \\
 f_y &= -2y(x^3 - 3x)e^{-y^2} = 0.
\end{align*}
\]

From the first equation we deduce that \(3x^2 - 3 = 0 \) so \(x = \pm 1 \) (since \(e^{-y^2} \) is never \(0 \)). In the second equation, we then see that \(e^{-y^2} \) and \(x^3 - 3x \) are not \(0 \), so \(y \) must be zero. Thus the two critical points are

\[
\begin{align*}
P_1 : (x, y) &= (1, 0) \\
P_2 : (x, y) &= (-1, 0).
\end{align*}
\]

To classify the critical points, we need to evaluate \(D = f_{xx}f_{yy} - f_{xy}^2 \). Fortunately, \(e^{-y^2} = 1 \) and \(y = 0 \), simplifying the calculations. We calculate:

\[
\begin{align*}
P_1 : D &= (6)(4) - 0 > 0 \\
P_2 : D &= (-6)(-4) - 0 > 0
\end{align*}
\]

Thus both are either maxima or minima. Looking at the signs of \(f_{xx} \), we see that \(P_1 \) is a local minimum and \(P_2 \) is a local maximum.

(6) Find the largest box with one vertex at \((0, 0, 0)\), the opposite vertex on the ellipsoid \(E = \{(x, y, z) | x^2 + 4y^2 + 9z^2 = 1\} \) and with sides aligned with the \(x \), \(y \), and \(z \) axes. Use Lagrange multipliers.

Answer. We want to maximize the objective function \(f(x, y, z) = xyz \) subject to the constraint that \(g(x, y, z) = x^2 + 4y^2 + 9z^2 = 1 \). By Lagrange multipliers, we need to solve

\[
\begin{align*}
 \nabla f &= \lambda \nabla g \\
 (yz, xz, xy) &= \lambda(2x, 8y, 18z) \\
 x^2 + 4y^2 + 9z^2 &= 1.
\end{align*}
\]

Solving the first 3 equations for \(\lambda \) and setting the results equal, we find

\[
\begin{align*}
 \frac{yz}{2x} &= \frac{xz}{8y} = \frac{xy}{18z}
\end{align*}
\]

which yields (after multiplying by 2, dividing by \(xyz \) and inverting each equation)

\[
\begin{align*}
x^2 &= 4y^2 = 9z^2.
\end{align*}
\]
From the constraint equation, we then find

\[3x^2 = 1 \]
\[x = \frac{1}{\sqrt{3}} \]
\[y = \frac{1}{2\sqrt{3}} \]
\[z = \frac{1}{3\sqrt{3}} \]

(7) (a) Compute \((-1 + i)^4\).

Answer.

\[(-1 + i)^2 = 1 - 2i - 1 = -2i \]
\[(-1 + i)^4 = ((-1 + i)^2)^2 = (-2i)^2 = -4. \]

(b) Find all 4th roots of \(-4\).

Answer. Note that we found one 4th root of \(-4\) in the first part. We can find the others by taking that answer and rotating repeatedly by \(360^\circ / 4 = 90^\circ\). Alternatively, we use polar coordinates: with \(z = (r, \theta)^P\) in polar coordinates, we solve:

\[z^4 = -4 \]
\[(r, \theta)^P = ((4, 180^\circ)^P)^{1/4} \]
\[= (\sqrt{2}, (180^\circ + n360^\circ)/4) \]

where \(n\) ranges from 0 to 3 (to give the four different fourth roots). These points are

\[z_1 = (\sqrt{2}, 45^\circ)^P = 1 + i \]
\[z_2 = (\sqrt{2}, 45^\circ + 90^\circ)^P = -1 + i \]
\[z_3 = (\sqrt{2}, 45^\circ + 180^\circ)^P = -1 - i \]
\[z_4 = (\sqrt{2}, 45^\circ + 270^\circ)^P = 1 - i. \]

(8) Show that absolute value is multiplicative on complex numbers:

\[|z_1 z_2| = |z_1||z_2| \]

for \(z_1\) and \(z_2\) complex numbers.
Answer. Remember that if $z = x + iy$, then $|z| = \sqrt{x^2 + y^2}$. With $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, we then have

$$\begin{align*}
|z_1z_2| &= |(x_1 + iy_1)(x_2 + iy_2)| \\
&= |x_1x_2 - y_1y_2 + i(x_1y_2 + y_1x_2)| \\
&= \sqrt{(x_1x_2 - y_1y_2)^2 + (x_1y_2 + y_1x_2)^2} \\
&= \sqrt{x_1^2x_2^2 + y_1^2y_2^2 + x_1^2y_2^2 + y_1^2x_2^2}.
\end{align*}$$

(In the last step, the middle term in both squares, involving $x_1x_2y_1y_2$, cancels out.)

On the other side, we have

$$\begin{align*}
|z_1||z_2| &= \sqrt{x_1^2 + y_1^2}\sqrt{x_2^2 + y_2^2} \\
&= \sqrt{(x_1^2 + y_1^2)(x_2^2 + y_2^2)} \\
&= \sqrt{x_1^2x_2^2 + y_1^2y_2^2 + x_1^2y_2^2 + y_1^2x_2^2}.
\end{align*}$$

The last lines match from the two sides, so the two sides are equal.

(9) (a) Find the general solution to $6y' + 9y = 0$.

Answer. The characteristic equation is

$$6r + 9 = 0$$

with solution $r = -3/2$, so the general solution is

$$y(x) = k_1e^{-3x/2}.$$

(b) Find the general solution to $y'' + 6y' + 9y = 0$.

Answer. The characteristic equation is

$$r^2 + 6r + 9 = 0$$

$$(r + 3)^2 = 0$$

with a double root at $r = -3$. Thus the general solution is

$$y(x) = k_1e^{-3x} + k_2xe^{-3x}.$$

(c) Find the solution to $y'' + 6y' + 9y = 0$ where $y(0) = 0$ and $y'(0) = 1$.

Answer. This is the same equation as above, which we solve for k_1 and k_2. We find

$$y(0) = k_1 = 0$$

$$y'(x) = -3k_1e^{-3x} + k_2(1 - 3x)(e^{-3x})$$

$$= -3k_1 + k_2 = 1$$

$$k_2 = 1$$

$$y(x) = xe^{-3x}.$$
(d) Find the general solution to $y'' + 6y' + 9y = x^2 + e^x$.

Answer. The complementary equation is just the one we found above, so we just need to find a particular solution. We break it into two parts: one particular solution with RHS x^2, and another with RHS e^x. For the first, we guess that y might be a polynomial in x of degree 2:

$$y_1(x) = Ax^2 + Bx + C$$
$$y'_1(x) = 2Ax + B$$
$$y''_1(x) = 2A$$

$$y''_1 + 6y'_1 + 9y_1 = 2A + (12Ax + 6B) + (9Ax^2 + 9Bx + 9C)$$
$$= 9Ax^2 + (12A + 9B)x + (2A + 6B + 9C)$$
$$= x^2$$
$$9A = 1$$
$$12A + 9B = 0$$
$$2A + 6B + 9C = 0$$

which has a solution $A = 1/9$, $B = -4/27$, $C = -2/27$, so

$$y_1(x) = x^2/9 - 4x/27 - 2/27.$$

For the second, we guess that y might be a multiple of e^x:

$$y_2 = y'_2 = y''_2 De^x$$
$$y''_2 + 6y'_2 + 9y_2 = 16De^x$$
$$= e^x$$
$$D = 1/16$$
$$y_2(x) = e^x/16.$$

Combining all these, the general solution is

$$y(x) = k_1e^{-3x} + k_2xe^{-3x} + x^2/9 - 4x/27 - 2/27 + e^x/16.$$