Zelevinsky's Talk

Questions?

Q: Is there a notion of complex length?

A: One amazing fact that started the whole notion of complex length:

Pick any surface, make a cut.

\[\lambda \text{-length of this arc is a function of } \lambda \text{-lengths \ in } T \]

\[\text{it is a rational func. because of each arc rel.} \]

\[\text{Actually, it is a Laurent poly (by theory of Actors)} \]

Recall hyperbolic structures correspond to representations into \(\text{PSL}_2(\mathbb{R}) \).

(For closed surfaces)

\[\text{For complex, } \lambda \text{-lengths can be interpreted as reps into } \text{PSL}_2(\mathbb{R}) = \text{iso} + (\mathbb{H}^3), \]

\[\text{Unfortunately, } \lambda \text{-lengths can always be defined this way.} \]

\[\lambda \text{-lengths not always well-defined} \]

Let's talk about these \(\lambda \)'s.
Closed surface with punctures

Isometries of \mathbb{H}^2:

Elliptic
- Fix a point in \mathbb{H}^2
- Rotate by some angle

Hyperbolic
- Fix a geodesic in \mathbb{H}^2
- Scale by a factor
- Fix two points on $\partial \mathbb{H}^2$
 (slide up?)

In between:

Parabolic
- Fix 1 pt at $\partial \mathbb{H}^2$

(Hyperbolic n-space isn't much worse than this, actually)
Whose does this classification come from?

Proof: Consider \(\text{det } M \in \text{SL}_2(\mathbb{R}) \). Can have 2 distinct real eigenvalues \(\lambda, \lambda^{-1} \) so it can be conjugated appropriately to get \(\begin{pmatrix}
abla & 0 \\
0 & \lambda^{-1} \end{pmatrix} \)

\[z \rightarrow z^\lambda, \text{ so } \lambda \text{ is hyperbolic} \]

Can have 2 complex equals \(\lambda \) so \(\lambda^{-1} = \bar{\lambda} \) on unit circle

\[\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \end{pmatrix} \rightarrow \text{rotation by } 2\theta \in \text{PSL}_2(\mathbb{R}) \]

\[= \text{I} \in \text{PSL}_2(\mathbb{R}) \]

so elliptic.

Can have a repeated eigenvalue \(\lambda = 1 \), \(\lambda \begin{pmatrix} 1 & x \\
0 & 1 \end{pmatrix} \)

\[z \rightarrow z + x, \text{ so parabolic} \]

\[\text{decoration } \Rightarrow \text{choice of sign in } \mathbb{R}^3 \]

\[\text{fixed by monodromy, } \text{modulo } \pm 1 (\text{or } 0 \text{ sign}) \]
How do you get a B-matrix from a triangulation;

Put this little feature inside each $A,$ check this corresponds to changing $+2$ and -2.

That notation below is correct:

1. Add composite arrows through v
2. Reverse arrows to/from v
3. Delete bigons \circledast

Note: some vertices can be rotated, some can't:

Let:

get inner $G\sim A_3$ (note $0\rightarrow 0$)
and $0\rightarrow 0$
are mutation equivalent

Note arrows are clockwise in each A

Generally A_n as hyperbolic structures on $(n+3)$-gon

assertation to see this is made and
you get by a line belt T
\(D_n \) = once punctured polygon

Or is mutation equivalent to

\[\text{note same given at} \]

\[\text{which is} \ A_\ell, \]

\(A_3, \)

so \(D_3 = A_3, \)

at root systems

punctured square \(D_4 \) = cluster algebra on \(\text{Mat}_{3 \times 3} \).
The mutation-finite cluster algebras fall into three classes:

1. Surface cluster algebras (i.e., A_n, D_n)
2. Rank 2 cluster algebras
3. $\mathbb{Z}/7$ diagrams (some with different short/long roots, e.g., $\mathbb{Z}/2$ and $\mathbb{Z}/2$ are not distinguished)

If we restrict to skew-symmetric (not stable), we get the simply-laced case: surfaces not orbifolds.

Given a surface (S, M), look at set of anchors of S, these are in fact the arrows

\[\text{e.g., } \text{plus} \quad \square \rightarrow \square \]

But certain modules MCG is always finite, because if we don't use exactly when it is an surface, just unstructured data.

But which side of which a goes to which side of another a.

So translation $\text{MCG} \rightarrow \text{quiv}$

(note with α-terms you get the quiver $\begin{array}{cc} 0 & 3 \\ \alpha & 0 \end{array}$)

So only finitely many quivers.

(alternatively, MCG is only have entries $-1, 0, 1, 2, 3$ so)

There is only a finite # of possible MCG's.
Exercise: Find surfaces that give the following series of Dynkin diagrams:

\[A_k \xrightarrow{0} 0 \xrightarrow{0} 0 \xrightarrow{0} 0 \xrightarrow{0} \]

(on-fa-sion; matter)

(same as previous)

(counterclock)

(very orientation)

From last time: \(x_{n+1} = x_n^2 + 1 \) (focus cut open with 2 big cylinders, annular)

\[\begin{array}{c}
\text{Corner cases:} \\
\text{as}
\end{array} \]

\[\lambda(E) \lambda(D) = \lambda(A) \lambda(C) + \frac{1}{\lambda(D)} \lambda(A) \]

\[\begin{array}{c}
\text{vs.}
\end{array} \]

\[x(D) x(D') = x(B) x(A) , \quad x(D') x(B) = x(A) x(C) , \quad x(D') x(D) = x(B) x(C) \]
Def. For \(p \) a cusp in a hyperbolic surface, \(h \) a horocycle around \(p \),

- let \(a = \) length of \(h \),
- let \(\overline{h} = \) conjugate horocycle
- horocycle of length \(\frac{1}{a} \)

Lemma: In a punctured monogon,

\[\frac{A(A^1)}{A(A)} = \frac{1}{A(B)} \]

A and \(A^1 \) are same area, but in \(A^1 \), length is measured to conjugate horocycle

Proof:

- let \(a = \) length of horocycle
- recall

\[\text{length of horocycle} = \frac{\lambda(\beta)}{\lambda(\alpha) \lambda(\gamma)} \]

so cutting obtuse, we get

\[a = \frac{\lambda(\beta)}{\lambda(A^1)^2} \]

So for \(A^1 \), \(\frac{1}{a} = \frac{\lambda(\beta)^2}{\lambda(A^1)^2 \lambda(A)} \). Multiply these eqns, get \(1 = \frac{\lambda(\beta)^2}{\lambda(A)^2 \lambda(A^1)^2} \). \(\Box \)