Lecture 10: Complex exponential

October 12, 2010

Announcements

- Homework 4 due today.
- Next office hours: Wednesday, 2–3PM, Math 614

Another product

Here’s another product, this one for 2D vectors.

\[(a, b) \ast (c, d) = (ac - bd, ad + bc).\]

It is not the dot product or the cross product. It looks a little weird. What can we say about it?

Question

What does multiplication by \((1, 0)\) do?

Answer

Nothing!

Question

What does multiplication by \((0, 1)\) do?

Answer

Rotate by 90° counterclockwise.

Exploring the product

Multiplication by \((1, 0)\) does nothing. Let's give \((1, 0)\) the temporary name "\(\langle 1 \rangle\)."

Multiplication by \((0, 1)\) rotates by 90° counterclockwise.
In particular, \((0, 1) \ast (0, 1) = (-1, 0) = -\langle 1 \rangle\): it's a square root of \(-1.
Let's give \((0, 1)\) the temporary name "\(\langle i \rangle\)."

Does this behave the way we expect?

Any 2D vector can be written \((x, y) = x\langle 1 \rangle + y\langle i \rangle\).

Then

\[(a, b) \ast (c, d) = (a\langle 1 \rangle + b\langle i \rangle) \ast (c\langle 1 \rangle + d\langle i \rangle)
= ac\langle 1 \rangle \ast \langle 1 \rangle + ad\langle 1 \rangle \ast \langle i \rangle + bc\langle i \rangle \ast \langle 1 \rangle + bd\langle i \rangle \ast \langle i \rangle
= ac\langle 1 \rangle + ad\langle i \rangle + bc\langle i \rangle - bd\langle 1 \rangle
= (ac - bd, ad + bd).\]

Everything was forced by properties: Commutativity, associativity with scalar multiplication, distributivity, plus what we knew about \((1, 0)\) and \((0, 1)\).

Properties of complex multiplication

Theorem

The product \(\ast\) defined above is

- Commutative: \(\vec{v} \ast \vec{w} = \vec{w} \ast \vec{v}\).
- Associative with scalars: \((a\vec{v}) \ast \vec{w} = a(\vec{v} \ast \vec{w}) = \vec{v} \ast (a\vec{w})\).
- Distributive: \(\vec{u} \ast (\vec{v} + \vec{w}) = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w}\).
- Associative: \(\vec{u} \ast (\vec{v} \ast \vec{w}) = (\vec{u} \ast \vec{v}) \ast \vec{w}\).
- Has a unit: \((1, 0) \ast \vec{v} = \vec{v}\).

Now let's drop the angle brackets on \(\langle 1 \rangle\) and \(\langle i \rangle\). Also, write the product just as multiplication.

We have seen a complex number \(x + yi\) can be thought of as a 2D vector, with product above. (Check: Is addition correct?)
Geometry of complex multiplication

Multiplication by i (or $(0,1)$) had a nice geometric interpretation.

Question
Can we find a geometric interpretation for multiplication in general? What are some examples?

Answer
Yes! Similar triangles.

\[1 + i \star 1 + 0.5i = 0.5 + 1.5i \]

Exponentiation

There are three ways we will think about the exponential function:

- Compounded interest.
- Solution to a differential equation: \(\frac{d}{dt} e^t = e^t \).
- Taylor series: \(e^x = 1 + x + x^2/2 + x^3/6 + \cdots \).

What happens if we put in a complex argument?

All three methods will generalize.

At first we'll just treat this as a formal question, but it turns out to be very useful to think about the exponential of complex numbers.

Compounded interest

If I put $2000 in a savings account with an interest rate of 5\% for 1 year, I end up with...

- \($2000(1 + 0.05) = $2100 \), compounded annually
- \($2000(1 + 0.025)^2 = $2101.25 \), compounded twice a year
- \($2000(1 + (0.05)/12)^{12} = $2102.32 \), compounded monthly
- \($2000(1 + (0.05)/365)^{365} = $2102.53 \), compounded daily
- \($2000 \exp(0.05) = $2102.54 \), compounded continuously

Theorem

\[\lim_{n \to \infty} (1 + x/n)^n = e^x. \]

(e^x is also written \exp(x).)

Compounding imaginary interest

Now suppose our interest rate is \(i \). What happens then?

Compound the interest \(n \) times: compute \((1 + i/n)^n \).

What if the interest rate is \(\pi i \)?

What do you guess the answer is? Do you want your money in that bank?)
Compounding imaginary interest

Now suppose our interest rate is i. What happens then?

Compound the interest n times: compute
\[(1 + i/n)^n].

What if the interest rate is πi?
What do you guess the answer is? Do you want your money in that bank?

$n = 4$

Compounding imaginary interest

Now suppose our interest rate is i. What happens then?

Compound the interest n times: compute
\[(1 + i/n)^n].

What if the interest rate is πi?
What do you guess the answer is? Do you want your money in that bank?

$n = 20$

Compounding imaginary interest

Now suppose our interest rate is i. What happens then?

Compound the interest n times: compute
\[(1 + i/n)^n].

What if the interest rate is πi?
What do you guess the answer is? Do you want your money in that bank?

$n = 1$

Compounding imaginary interest

Now suppose our interest rate is i. What happens then?

Compound the interest n times: compute
\[(1 + i/n)^n].

What if the interest rate is πi?
What do you guess the answer is? Do you want your money in that bank?

$n = 5$
Compounding imaginary interest

Now suppose our interest rate is i. What happens then?

Compound the interest n times: compute $(1 + i/n)^n$.

What if the interest rate is πi?

What do you guess the answer is? Do you want your money in that bank?

Solving a differential equation

The geometric pictures suggested that $e^{\pi i} = -1$. Let's look at it from another point of view.

Theorem
The function $f(x) = e^x$ is the unique function that satisfies

- $f(0) = 1$ and
- $f'(x) = f(x)$.

More generally, for a constant k, the function $g(x) = e^{kx}$ satisfies $g'(x) = kg(x)$.

What about $h(t) = e^{it}$? It should satisfy $h'(t) = ih(t)$. What function satisfies this?

Theorem
The function $h(t) = \cos(t) + \sin(t) i$ satisfies

- $h'(t) = ih(t)$ and
- $h(0) = 1$.

We therefore define e^{it} to be $\cos(t) + \sin(t) i$.

Taylor series

One final point of view is Taylor series: Expand out functions by a polynomial approximation.

Theorem

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots + \frac{x^n}{n!}$$

Check: This is compatible with $\frac{d}{dx} e^x = e^x$.

Other useful series:

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots$$

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \cdots$$

$$\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} + \cdots$$

Check: $\frac{d}{dx} \cos(x) = -\sin(x)$ and $\frac{d}{dx} \sin(x) = \cos(x)$.

Complex Taylor series

What happens if we compute e^{ix}?

$$e^{ix} = 1 + xi + \frac{(xi)^2}{2} + \frac{(xi)^3}{6} + \frac{(xi)^4}{24} + \frac{(xi)^5}{120} + \cdots$$

$$= 1 + xi - \frac{x^2}{2} - \frac{x^3 i}{6} + \frac{x^4}{24} + \frac{x^5 i}{120} + \cdots$$

$$= 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^3 i}{6} + \frac{x^5}{120} + \cdots$$

$$+ \left(x - \frac{x^3}{6} + \frac{x^5}{120} + \cdots \right) i$$

$$= \cos(x) + \sin(x) i,$$

just like we got before.
Summary

Theorem

\[e^{ix} = \cos(x) + \sin(x) i. \]

In particular,

\[e^{\pi i} = -1. \]

This is called *Euler’s equation*. It has been called the most beautiful equation in mathematics!