NOTES ON UNIVERSALLY NULL SETS

C. CARUVANA

Here, we summarize some results regarding universally null subsets of Polish spaces and conclude with the fact that, following J. Mycielski, one can produce an analytic subfield of \mathbb{R} which is not universally null. Many results come from [7] and [8].

1. INTRODUCTION AND PRELIMINARIES

For a Polish space X, we will let $\mathcal{B}(X)$ denote the class of Borel subsets of X. If X is Polish, then the space of Borel probability measures $\mathcal{M}(X)$ on X is Polishable with the weak topology. A continuous measure $\mu \in \mathcal{M}(X)$ is a measure giving every finite set measure zero. Let $\mathcal{M}_c(X)$ be the collection of continuous $\mu \in \mathcal{M}(X)$. Then $\mathcal{M}_c(X)$ is a dense G_δ subset of $\mathcal{M}(X)$ as long as X has no isolated points. Refer to [10] for more details.

Definition 1. Let X be a Polish space. We say that $A \subseteq X$ is universally null if $\mu^*(A) = 0$ for every $\mu \in \mathcal{M}_c(X)$ where μ^* is the outer measure generated by μ.

Definition 2. Let X be a Polish space. For $A \subseteq X$, we define the annihilator of A to be
\[
\mathcal{N}(A) = \{ \mu \in \mathcal{M}(X) : \mu^*(A) = 0 \}.
\]
We say that A is residually null if $\mathcal{N}(A)$ is co-meager in $\mathcal{M}(X)$.

For a more in depth discussion of the theory of residually null sets, refer to [3]. Of immediate interest is that all universally null subsets of any Polish space without isolated points are also residually null.

Definition 3. Let X be a topological space. We say that a set $A \subseteq X$ is a Luzin set if it is uncountable and, for every $M \subseteq X$ which is meager, $A \cap M$ is countable.

Theorem 4 (Mahlo [6], Luzin [5]). Assuming CH, there is a set $A \subseteq \mathbb{R}$ which is a Luzin set.

Proof. Let $\{F_\alpha : \alpha < \omega_1\}$ be the collection of all closed nowhere dense subsets of \mathbb{R}. For each $\alpha < \omega_1$, inductively choose
\[
x_\alpha \not\in \{x_\beta : \beta < \alpha\} \cup \bigcup \{ F_\beta : \beta \leq \alpha \}.
\]
Then the set $\{x_\alpha : \alpha < \omega_1\}$ is as desired. \qed

Date: December 20, 2017.
One can immediately see that the set produced in Theorem 4 is not meager.

Definition 5 (Borel [2]). Let X be a metric space with compatible metric $
ho$. We say that $A \subseteq X$ has **strong measure zero** if, given any sequence \(\{\varepsilon_n > 0 : n \in \omega\} \), there exists a sequence \(\{A_n \subseteq X : n \in \omega\} \) so that \(\text{diam}_{\rho}(A_n) < \varepsilon_n \) and \(A \subseteq \bigcup\{A_n : n \in \omega\} \).

In a metric space \((X, \rho)\), since \(\text{diam}_{\rho}(A) = \text{diam}_{\rho}(\text{cl}(A)) \), we can cover any strong measure zero set with a countable union of closed sets satisfying the requisite properties.

Definition 6 (Besicovitch [1]). Let X be a topological space. We say that $A \subseteq X$ is **concentrated on** $B \subseteq X$ provided that, for every open set U so that $B \subseteq U$, $A \setminus U$ is countable.

Theorem 7 (Szpiłrajn [14]). Let X be a Polish space. A set $A \subseteq X$ is a Luzin set if and only if A is uncountable and concentrated on every countable dense set of X.

Proof. (\Rightarrow) Suppose A is a Luzin set and $D \subseteq X$ is countable and dense. Let U be any open set with $D \subseteq U$. Then U is dense so $X \setminus U$ is closed and nowhere dense. It follows that $A \cap (X \setminus U) = A \setminus U$ is countable as A is a Luzin set.

(\Leftarrow) Now, suppose A is uncountable and concentrated on every countable dense subset Q of X. We need only check that A meets every meager set on a countable set. It suffices to check that A meets every closed nowhere dense set on a countable set so let $F \subseteq X$ be closed and nowhere dense. Let $U = X \setminus F$ and notice that $D := Q \cap U$ is a countable dense set. Since U is open and $D \subseteq U$, we have that $A \setminus U$ is countable. That is, $A \setminus (X \setminus F) = A \cap F$ is countable, finishing the proof. \(\square\)

Theorem 8 (Sierpiński [11]). Let X be a Polish space and suppose $A \subseteq X$ is concentrated on a countable dense set. Then A has strong measure zero.

Proof. Let $D = \{d_n : n \in \omega\}$ be dense in X so that A is concentrated on D. Now, let $\{\varepsilon_n > 0 : n \in \omega\}$ and, for $n \in \omega$, pick an open set U_{2n} that contains d_n and satisfies $\text{diam}(U_{2n}) < \varepsilon_{2n}$. Define $U = \bigcup\{U_{2n} : n \in \omega\}$ and, since A is concentrated on D and $D \subseteq U$, notice that $A \setminus U$ is countable. Enumerate $A \setminus U = \{x_n : n \in \omega\}$ and, for $n \in \omega$, let U_{2n+1} be an open set containing x_n which satisfies $\text{diam}(U_{2n+1}) < \varepsilon_{2n+1}$. Finally, notice that the family $\{U_n : n \in \omega\}$ covers A and has the property that, for each $n \in \omega$, $\text{diam}(U_n) < \varepsilon_n$. Therefore, A has strong measure zero. \(\square\)

Lemma 9. Let X be a metric space and μ be a Borel probability measure on X. If μ is continuous, then, for every $\varepsilon > 0$ and $x \in X$, there exists a neighborhood U_x of x with $\mu(U_x) < \varepsilon$.
Lemma 10. Let \((X, \rho)\) be a compact metric space and \(\mu\) be a continuous Borel probability measure on \(X\). Then, for any \(\varepsilon > 0\), there exists a \(\delta > 0\) so that, for every closed \(F \subseteq X\) with \(\text{diam}_\rho(F) < \delta\), \(\mu(F) < \varepsilon\).

Proof. For each \(x \in X\), appeal to Lemma 9 to pick \(r_x > 0\) so that \(B_\rho(x, 2r_x)\) satisfies \(\mu(B_\rho(x, 2r_x)) < \varepsilon\). As \(X\) is compact, pick a finite subset \(A \subseteq X\) so that \(\{B_\rho(x, r_x) : x \in A\}\) covers \(X\). Define \(\delta = \min\{r_x : x \in A\} > 0\).

Now, let \(F \subseteq X\) be any closed set so that \(\text{diam}_\rho(F) < \delta\). Fix \(y \in F\) and pick \(x \in A\) so that \(y \in B_\rho(x, r_x)\). Now, for any \(z \in F\), notice that

\[
\rho(x, z) \leq \rho(x, y) + \rho(y, z) < r_x + \delta \leq 2r_x.
\]

That is, \(z \in B_\rho(x, 2r_x)\) and, as \(z \in F\) was arbitrary, we see that \(F \subseteq B_\rho(x, 2r_x)\) which provides us with the fact that \(\mu(F) < \varepsilon\). \(\square\)

Theorem 11 (Szpilrajn [13]). Let \(X\) be a Polish space and \(A \subseteq X\) have strong measure zero. Then \(A\) is universally null.

Proof. Suppose \(A \subseteq X\) is strong measure zero and let \(\mu\) be any continuous Borel probability on \(X\). Let \(\varepsilon > 0\) be arbitrary and define \(\varepsilon_n = \frac{\varepsilon}{2^{n+2}}\) for \(n \in \omega\). By [10, Theorem II.3.2] we can find compact \(K \subseteq X\) so that

\[
\mu(K) > \max\left\{1 - \frac{\varepsilon}{2^n}, 0\right\}.
\]

Now, notice that \(\nu\) defined on the Borel sets of \(K\) by \(\nu(E) = \frac{\mu(E)}{\mu(K)}\) is a Borel probability measure on \(K\). So, by Lemma 10, we can pick \(\delta_n > 0\) so that, whenever \(F \subseteq K\) is closed with \(\text{diam}(F) < \delta_n\), we have that \(\nu(F) < \varepsilon_n\).

Consider \(A' = A \cap K\) and notice that \(A'\) is also strong measure zero. Thus, we can find \(\{A_n \subseteq K : n \in \omega\}\) consisting of closed sets so that \(\text{diam}(A_n) < \delta_n\) and \(A' \subseteq \bigcup\{A_n : n \in \omega\}\). It follows that

\[
\nu^*(A') \leq \sum_{n \in \omega} \nu(A_n) \leq \sum_{n \in \omega} \frac{\varepsilon}{2^{n+2}} = \frac{\varepsilon}{2}.
\]

Hence,

\[
\frac{\mu^*(A')}{\mu(K)} = \nu^*(A') \leq \frac{\varepsilon}{2} \implies \mu^*(A') \leq \frac{\varepsilon}{2} \cdot \mu(K) \leq \frac{\varepsilon}{2}.
\]

Now, note that

\[
1 - \frac{\varepsilon}{2} < \mu(K) \implies \mu(X \setminus K) < \frac{\varepsilon}{2}.
\]

Finally, we have that \(\mu^*(A) \leq \mu^*(A \setminus K) + \mu^*(A') < \varepsilon\). As \(\varepsilon\) was arbitrary, we see that \(\mu^*(A) = 0\), completing the proof. \(\square\)

Corollary 12. Every Luzin subset of a Polish space is universally null.

Proof. Combine Theorems 7, 8, and 11. \(\square\)

Theorem 13. Assuming CH, there exists a set \(A \subseteq \mathbb{R}\) which is universally null which fails to have the Baire property.
Proof. Use Theorem 4 to produce a Luzin set $A \subseteq \mathbb{R}$ and notice that Corollary 12 guarantees that A is universally null. Moreover, A is residually null and, since A is non-meager, we appeal to [3, Theorem 14] to conclude that A cannot have the Baire property. \hfill \square

Lemma 14 (Sierpiński-Szpilrajn [12]). Let X be a Polish space, $A \subseteq X$, and $\mathcal{B}_A = \{ B \cap A : B \in \mathcal{B}(X) \}$. Then the following are equivalent.

(i) A is universally null;
(ii) any continuous measure on (A, \mathcal{B}_A) is identically zero.

Proof. ((i) \Rightarrow (ii)) Suppose μ is a continuous measure on (A, \mathcal{B}_A). Define ν on $(X, \mathcal{B}(X))$ by the rule

$$\nu(B) = \mu(B \cap A)$$

and observe that ν is a measure on X. Moreover, as μ is continuous, ν is continuous. Hence, $\nu^*(A) = 0$. From this we see that μ must be identically zero.

((ii) \Rightarrow (i)) Let μ be a continuous Borel probability measure on X. Now, define ν on (A, \mathcal{B}_A) by the rule

$$\nu(E) = \inf \{ \mu(B) : B \in \mathcal{B}(X), E \subseteq B \}.$$

To see that ν is a measure on (A, \mathcal{B}_A), let $\{E_n : n \in \omega\} \subseteq \mathcal{B}_A$ be a pair-wise disjoint family. For each $n \in \omega$, pick $B_n^* \in \mathcal{B}(X)$ so that $E_n = A \cap B_n^*$ and $E_n^* \in \mathcal{B}(X)$ so that $E_n \subseteq E_n^*$ and $\mu(E_n) = \nu(E_n)$. Then let $B_n = B_n^* \cap E_n^*$.

Now,

$$E := \bigcup \{E_n : n \in \omega\} \subseteq \bigcup \{B_n : n \in \omega\} =: B$$

and $B \in \mathcal{B}(X)$. For $n, m \in \omega$ with $n \neq m$, notice that

$$B_n \cap B_m \cap A = (B_n \cap A) \cap (B_m \cap A)$$

$$\subseteq (B_n^* \cap A) \cap (B_m^* \cap A)$$

$$= E_n \cap E_m$$

$$= \emptyset.$$

From this, we see that $E_n \subseteq B_n \setminus B_m$ which gives

$$\mu(B_n) = \nu(E_n) \leq \mu(B_n \setminus B_m) \leq \mu(B_n) = \mu(B_n \setminus B_m) + \mu(B_n \cap B_m).$$

Particularly, $\mu(B_n \cap B_m) = 0$ for $n \neq m$. It follows that

$$\nu(E) \leq \mu(B) = \sum_{n \in \omega} \mu(B_n) = \sum_{n \in \omega} \nu(E_n).$$
For the other inequality, pick \(G \in \mathcal{B}(X) \) so that \(G \cap A = E \) and \(\mu(G) = \nu(E) \). Then, since \(E_k \subseteq E \cap B_k \subseteq G \cap B_k \),

\[
\sum_{k=0}^{n-1} \nu(E_k) \leq \sum_{k=0}^{n-1} \mu(G \cap B_k) = \mu((G \cap B_0) \cup \cdots \cup (G \cap B_{n-1})) \\
\leq \mu(G) = \nu(E).
\]

Since this inequality holds for arbitrary \(n \in \omega \),

\[
\sum_{n \in \omega} \nu(E_n) \leq \nu(E)
\]

which establishes that \(\nu \) is a measure on \((A, \mathcal{B}_A)\).

As \(\nu \) is a continuous measure on \((A, \mathcal{B}_A)\), by hypothesis, \(\nu \) is identically zero. This guarantees that \(\mu^*(A) = 0 \), finishing the proof. \(\square \)

Lemma 15. Let \(X \) be Polish and \(A \subseteq X \). If \(A \) is universally null, then any continuous measure on \(\wp(A) \) is identically zero.

Proof. Let \(\mu \) be a continuous measure on \((A, \wp(A))\). Since \(\mu \rceil \wp_A \) is a measure on \((A, \mathcal{B}_A)\), \(\mu \rceil \wp_A \) is identically zero. Now, for any \(E \subseteq A \) and \(B \in \mathcal{B}_A \) with \(E \subseteq B \), since \(\mu(E) \leq \mu(B) = 0 \), we see that \(\mu \) is identically zero. \(\square \)

Proposition 16. The class of universally null subsets of a Polish space \(X \) is invariant under Borel isomorphisms.

Proof. Immediate from Lemma 14. \(\square \)

Theorem 17 (Szpilrajn). The product of universally null sets is universally null.

Proof. Let \(X \) and \(Y \) be universally null and suppose \(\mu \) is a continuous Borel probability measure on \(X \times Y \). Define a measure \(\nu \) on \(Y \) by

\[
\nu(B) = \mu(X \times B)
\]

for each Borel set \(B \subseteq Y \). Now, since \(X \) is universally null, \(\nu(\{y\}) = \mu(X \times \{y\}) = 0 \) for every \(y \in Y \) so \(\nu \) is continuous. It follows that, as \(Y \) is also universally null, \(\nu(Y) = \mu(X \times Y) = 0 \), finishing the proof. \(\square \)

Lemma 18. Suppose \(G \subseteq \mathbb{R} \) is co-meager. Then, for any \(z \in \mathbb{R} \), there exist \(x, y \in G \) so that \(z = x + y \).

Proof. Let \(z \in \mathbb{R} \) and, since \(G \) is co-meager, so is \(z - G \). Now, let \(y \in G \cap (z - G) \) and pick \(x \in G \) so that \(y = z - x \). \(\square \)

Theorem 19 (Sierpiński). Assuming CH, there exists a universally null set which is not strong measure zero.
Proof. Let \(\{ F_\alpha : \alpha < \omega_1 \} \) be the collection of all closed nowhere dense subsets of \(\mathbb{R} \) and \(\{ z_\alpha : \alpha < \omega_1 \} \) be an enumeration of \(\mathbb{R} \). Pick \(x_0, y_0 \notin F_0 \) so that \(x_0 + y_0 = z_0 \). For each \(0 < \alpha < \omega_1 \), inductively choose \(x_\alpha, y_\alpha \notin \{ x_\beta : \beta < \alpha \} \cup \{ y_\beta : \beta < \alpha \} \cup \bigcup \{ F_\beta : \beta \leq \alpha \} \) with the property that \(x_\alpha + y_\alpha = z_\alpha \). Then define \(X = \{ x_\alpha : \alpha < \omega_1 \} \cup \{ y_\alpha : \alpha < \omega_1 \} \).

Now we argue that \(X^2 \) is universally null but not strong measure zero. As \(X \) is transparently a Luzin set, it is universally null by Corollary 12. Hence, by Theorem 17, \(X^2 \) is universally null in \(\mathbb{R}^2 \). Now, define \(p : \mathbb{R}^2 \to \mathbb{R} \) by the rule \(p(x, y) = x + y \). Fix \(a, b \in \mathbb{R} \) and let \(x, y \in \mathbb{R} \) be so that \(\sqrt{(x-a)^2 + (y-b)^2} < \varepsilon \) where \(\varepsilon > 0 \). Now,

\[
\begin{align*}
| (x + y) - (a + b) |^2 &= (x - a + y - b)^2 \\
&= (x - a)^2 + 2(x - a)(y - b) + (y - b)^2 \\
&< 3 \cdot \varepsilon^2.
\end{align*}
\]

From this, we see that \(p \) takes \(\varepsilon \)-balls to \(\sqrt{3} \cdot \varepsilon \)-balls. Hence, \(p \) preserves strong measure zero sets. As \(p[X]^2 = \mathbb{R} \), it can’t possibly be the case that \(X^2 \) is strong measure zero.

\[\square\]

Theorem 20 (Grzegorek, Ryll-Nardzewski [4]). There exists a universally measurable set which is not a Borel set modulo a universally null set.

Proof. The example here is WO. Since \(\text{WO} \in \Pi^1_1 \), it is universally measurable. Now let \(B \) be a Borel set. We will show that

\[\text{WO} \Delta B \]

is not universally null. Notice that \(B \setminus \text{WO} \in \Sigma^1_1 \). So if \(B \setminus \text{WO} \) were uncountable, it would contain a perfect set ensuring that \(\text{WO} \Delta B \) is not universally null. So \(B \setminus \text{WO} \) must be countable.

Now, without loss of generality, we can assume that \(B \subseteq \text{WO} \). Since \(\text{WO} \) is \(\Pi^1_1 \)-complete, \(\text{WO} \setminus B \) is \(\Pi^1_1 \)-complete. Moreover, \(\text{WO} \setminus B \) is uncountable. Hence, \(\text{WO} \setminus B \) has the perfect set property so \(\text{WO} \setminus B \) is not universally null.

\[\square\]

2. **Subfields of \(\mathbb{R} \)**

Theorem 21 (Mycielski [9]). For any meager set \(Y \) of irrationals, there exists an uncountable perfect set \(X \) so that the field generated by \(X \) is disjoint from \(Y \).

Corollary 22. There exists an analytic subfield \(F \) of \(\mathbb{R} \) which is not universally null. Incidentally, such an \(F \) is meager.

Proof. Let \(Y \) be a meager set of irrationals, and \(X \) be an uncountable perfect set so that the field \(F \) generated by \(X \) is disjoint from \(Y \) by Theorem 21.
Immediately, as F is the field generated by X and X is closed, F is analytic. The fact that F supports a non-degenerate Borel probability measure follows from the fact that F contains an uncountable perfect set. That is, F is not universally null.

Now, since F is analytic, it has the Baire property. As F contains the rationals, F is dense. If F were non-meager, it would be open. But then, as an open subgroup of \mathbb{R}, F would also be closed yielding $F = \mathbb{R}$, a contradiction. Therefore, F is meager. □

REFERENCES