Transfinite Dimension Theory

C. Caruvana

University of North Texas

5 June 2014
For a regular space X, indX is defined recursively as follows:

- $\text{ind} X = -1$, $X = \emptyset$;
- $\text{ind} X \leq n$, $(\forall x \in X)(\forall U \in \mathcal{N}_x)(\exists V \in \mathcal{N}_x)$

 $[V \subseteq U \land \text{ind} \partial V < n]$;
- $\text{ind} X = n$, $\text{ind} X \leq n \land (\forall m < n)[\text{ind} X \leq m \text{ fails}]$.

Fact. $\text{ind} \mathbb{R}^n = n$ for $n \in \mathbb{N}$.

C. Caruvana

University of North Texas

Transfinite Dimension Theory
Definition

For a separable metric space X, we define dX recursively as follows:

- $dX = -1$, $X = \emptyset$;
- $dX = 0$, X has a basis of clopen sets;
- $dX \leq \alpha$, $X = Z \cup \bigcup \{F_n : n < \omega\}$ where $dZ \leq 0$, each F_n closed and $dF_n < \alpha$;
- $dX = \alpha$, $dX \leq \alpha$ and $\forall \beta < \alpha$, $dX \leq \beta$ fails.
Results

Theorem
\(d\) is a topological invariant.

Theorem
For \(n < \omega\), \(dX = n\) if and only if \(\text{ind}X = n\).

Theorem
If \(dX\) exists, \(dX\) is a countable ordinal.
Theorem (Subspace Theorem)
If $Y \subseteq X$ and dX exists, then dY exists and $dY \leq dX$.

Theorem
If $dX = \alpha$, then, for any $\beta \leq \alpha$, there is a closed subset $F \subseteq X$ so that $dF = \beta$.

Theorem (Countable Sum Theorem)
If $X = \bigcup\{F_n : n < \omega\}$ where each F_n is closed, then $dX = \sup\{dF_n : n < \omega\}$.
For an ordinal α, we let
\[\lambda(\alpha) = \sup\{\beta : \beta \leq \alpha \text{ and } \beta \text{ is a limit ordinal}\} \] and $n(\alpha) < \omega$ the unique natural so that $\alpha = \lambda(\alpha) + n(\alpha)$. Now, define $\Sigma : \text{ON}^2 \rightarrow \text{ON}$ by the rule

\[\Sigma(\alpha, \beta) = \max\{\lambda(\alpha), \lambda(\beta)\} + \min\{\lambda(\alpha), \lambda(\beta)\} + n(\alpha) + n(\beta). \]

Theorem (Product Theorem)

Suppose X and Y are so that dX and dY exist. Then $d(X \times Y) \leq \Sigma(dX, dY)$.

Theorem (Addition Theorem)

Suppose X and Y are so that dX and dY exist. Then $d(X \cup Y) \leq \Sigma(dX, dY) + 1$.
For a dimension function e and a limit ordinal α, we say that X is **strongly α-dimensional** if $X = \bigcup \{ F_n : n < \omega \}$ where each F_n is closed and $eF_n < \alpha$.

Theorem

Let λ be a limit ordinal, $n \in \mathbb{N}$ and suppose dX exists. Then $dX \leq \lambda + n$ if and only if $X = X_\lambda \cup X_n$ where X_λ is strongly λ-dimensional and $dX_n \leq n$.
If e is a finite dimension function on the class of separable metrizable spaces that satisfies the following, then $e = \text{ind}$.

N.I. $e\{\emptyset\} = 0$;
N.II. $Y \subseteq X$ implies that $eY \leq eX$;
N.III. if $X = \bigcup\{F_n : n < \omega\}$ where each F_n is closed, $eX = \sup\{eF_n : n < \omega\}$;
N.IV. $e(X \cup Y) \leq eX + eY + 1$;
N.V. if $eX < \omega$, then there is a compactification \hat{X} of X so that $e\hat{X} = eX$;
N.VI. if $X \neq \emptyset$ and $eX < \omega$, then there is a base \mathcal{B} for X so that, for every $U \in \mathcal{B}$, $e\partial U \leq eX - 1$.
I. \(e\{\emptyset\} = 0; \)

II. \(Y \subseteq X \) implies that \(eY \leq eX; \)

III. if \(X = \bigcup\{F_n : n < \omega\} \) where each \(F_n \) is closed,
 \(eX = \sup\{eF_n : n < \omega\}; \)

IV. \(e(X \cup Y) \leq \Sigma(eX, eY) + 1; \)

V. if \(eX \) exists, then there is a compactification \(\hat{X} \) of \(X \) so that \(e\hat{X} = eX; \)

VI. if \(X \neq \emptyset \) and \(eX \) exists, then there is a base \(B \) for \(X \) so that, for every \(U \in B, \)
 \(e\partial U \leq eX - 1 \) when \(eX \) is a successor or
 \(\partial U \) is strongly \(eX \)-dimensional when \(eX \) is a limit.
Questions

In [2], a metric continuum is constructed which has d dimension $\omega + 1$.

Question. Does there exist a separable metric space X with $dX \geq \omega + 2$?

Question. Does (V) hold? Do (I - VI) characterize the d dimension?
References

Theory of Dimensions: Finite and Infinite.
Heldermann-Verlag, 1995.

A new transfinite dimension for metrizable spaces.