An Extension of the Baire Property

Christopher Caruvana

52nd Spring Topology and Dynamical Systems Conference
Auburn University
14 March 2018
Outline

1 Preliminaries
2 Residually Null Sets
3 Extended Baire Property
4 Martin’s Axiom
5 Future Work
6 References
Preliminaries

Definition
By a **Polish space** we mean a separable topological space that admits a compatible complete metric.
Preliminaries

Definition

By a **Polish space** we mean a separable topological space that admits a compatible complete metric.

Definition

Let X be a topological space. We say that $A \subseteq X$ is **nowhere dense** if $\text{int}(\text{cl}(A)) = \emptyset$ and that it is **meager** if there exists $\{B_n \subseteq X : n \in \mathbb{N}\}$ so that each B_n is nowhere dense and $A \subseteq \bigcup \{B_n : n \in \mathbb{N}\}$. A set $A \subseteq X$ is **co-meager** if $X \setminus A$ is meager.
\[M(X) \] – the collection of all Borel probability measures on \(X \)

\[C(X) \] – the collection of continuous functions \(f : X \to \mathbb{R} \)

\(\mu \in M(X) \) given induces a natural map \(f \mapsto \int f \, d\mu \), \(C(X) \to \mathbb{R} \)

\(M(X) \) injects naturally into \(\mathbb{R}^{C(X)} \) so inherits its topology, called the \textbf{weak topology} therefrom
- $\mathcal{M}(X)$ – the collection of all Borel probability measures on X
- $C(X)$ – the collection of continuous functions $f : X \to \mathbb{R}$
- $\mu \in \mathcal{M}(X)$ given induces a natural map $f \mapsto \int f \, d\mu$, $C(X) \to \mathbb{R}$
- $\mathcal{M}(X)$ injects naturally into $\mathbb{R}^{C(X)}$ so inherits its topology, called the **weak topology** therefrom

Theorem

If X is Polish, then $\mathcal{M}(X)$ endowed with the weak topology is a Polish space.
Definition

A _σ-ideal_ of sets is a collection $I \subseteq \wp(X)$ so that

- if $A \in I$ and $B \subseteq A$, then $B \in I$ and
- for $\{A_n : n \in \mathbb{N}\} \subseteq I$, $\bigcup\{A_n : n \in \mathbb{N}\} \in I$.,
Definition

A \(\sigma \)-ideal of sets is a collection \(I \subseteq \mathcal{P}(X) \) so that

- if \(A \in I \) and \(B \subseteq A \), then \(B \in I \) and
- for \(\{A_n : n \in \mathbb{N}\} \subseteq I \), \(\bigcup \{A_n : n \in \mathbb{N}\} \in I \).

By construction, the class of meager subsets of a topological space \(X \) is a \(\sigma \)-ideal.
Definition

A σ-ideal of sets is a collection $I \subseteq \wp(X)$ so that

- if $A \in I$ and $B \subseteq A$, then $B \in I$ and
- for $\{A_n : n \in \mathbb{N}\} \subseteq I$, $\bigcup\{A_n : n \in \mathbb{N}\} \in I$.

By construction, the class of meager subsets of a topological space X is a σ-ideal.

Theorem (Baire Category Theorem)

The σ-ideal of meager subsets of a Polish space X is proper. That is, $X \notin I$.

C. Caruvana

Extended Baire Prop.
Residually Null Sets

Given $\mu \in \mathcal{M}(X)$, recall that the outer measure μ^* induced by μ is a set function $\mu^* : \varnothing(X) \rightarrow [0, 1]$ defined by

$$\mu^*(A) = \inf \{ \mu(U) : U \text{ is open and } A \subseteq U \}.$$

Definition

For $A \subseteq X$, we define

$$\mathcal{N}(A) = \{ \mu \in \mathcal{M}(X) : \mu^*(A) = 0 \}.$$

Then we say that $A \subseteq X$ is residually null if $\mathcal{N}(A)$ is co-meager in $\mathcal{M}(X)$. Let $\textbf{RN}(X)$ be the collection of residually null sets.
The following was done by Dubins and Freedman [1] in 1964 for the context when X is compact metrizable.

Theorem

Suppose X is a Polish space. If $A \subseteq X$ is meager, A is residually null. On the other hand, if A is a set with the Baire property and is residually null, then A is meager.
The following was done by Dubins and Freedman [1] in 1964 for the context when X is compact metrizable.

Theorem

Suppose X is a Polish space. If $A \subseteq X$ is meager, A is residually null. On the other hand, if A is a set with the Baire property and is residually null, then A is meager.

- CH, or MA, \implies existence of residually null sets which are non-meager.
\(\mathcal{M}_c(X) \) – the collection of all continuous (non-atomic) \(\mu \in \mathcal{M}(X) \)
- $\mathcal{M}_c(X)$ – the collection of all continuous (non-atomic) $\mu \in \mathcal{M}(X)$
- From now on, we will only be interested in Polish spaces without isolated points
\(\mathcal{M}_c(X) \) – the collection of all continuous (non-atomic) \(\mu \in \mathcal{M}(X) \)

From now on, we will only be interested in Polish spaces without isolated points

Theorem

If \(X \) is a Polish space, then \(\mathcal{M}_c(X) \) is a dense \(G_\delta \) subset of \(\mathcal{M}(X) \).
Definition

For $A \subseteq X$, A is **universally null** if $\mathcal{N}(A) = \mathcal{M}_c(X)$.
Definition

For $A \subseteq X$, A is **universally null** if $\mathcal{N}(A) = \mathcal{M}_c(X)$.

- universally null \rightarrow residually null
Definition

For $A \subseteq X$, A is **universally null** if $\mathcal{N}(A) = \mathcal{M}_c(X)$.

- universally null \implies residually null
- any perfect meager set is residually null but not universally null
Proposition (Extended BCT)

The collection of residually null subsets of a Polish space X is a σ-ideal. Moreover, this σ-ideal is proper, trivially, as $\mu(X) = 1$ for all $\mu \in M(X)$.

Question

For a Polish space X, the collection I of all sets A so that there is a meager set M and a universally null set U with $A = M \cup U$ is a proper σ-ideal. Then $I \subseteq RN(X)$. Is it the case that $RN(X) = I$?
Proposition (Extended BCT)

The collection of residually null subsets of a Polish space X is a σ-ideal. Moreover, this σ-ideal is proper, trivially, as $\mu(X) = 1$ for all $\mu \in M(X)$.

Question

For a Polish space X, the collection \mathcal{I} of all sets A so that there is a meager set M and a universally null set U with $A = M \cup U$ is a proper σ-ideal. Then $\mathcal{I} \subseteq \mathcal{RN}(X)$. Is it the case that $\mathcal{RN}(X) = \mathcal{I}$?
Theorem (C.)

Let X and Y be Polish spaces and suppose that $A \subseteq X$ is a universally null set which is non-meager. Then $A \times Y \in \mathbf{RN}(X \times Y)$ but $A \times Y$ cannot be written as the union of a meager set with a universally null set.
Theorem (C.)

Let X and Y be Polish spaces and suppose that $A \subseteq X$ is a universally null set which is non-meager. Then $A \times Y \in RN(X \times Y)$ but $A \times Y$ cannot be written as the union of a meager set with a universally null set.

We offer a sketch of the proof.

Lemma

Let X and Y be Polish spaces. Then, for $\varepsilon > 0$, the set

$$\{\mu \in M(X \times Y) : (\exists x \in X)(\mu(\{x\} \times Y) \geq \varepsilon)\}$$

is closed and nowhere dense.
Lemma

Let X and Y be Polish spaces and $A \subseteq X$ be universally null. Then, for $\mu \in \mathcal{M}(X \times Y)$,

$$\mu^*(A \times Y) > 0 \iff (\exists x \in A)(\mu(\{x\} \times Y) > 0).$$
Lemma

Let X and Y be Polish spaces and $A \subseteq X$ be universally null. Then, for $\mu \in \mathcal{M}(X \times Y)$,

$$\mu^*(A \times Y) > 0 \iff (\exists x \in A)(\mu(\{x\} \times Y) > 0).$$

Lemma

Let X and Y be Polish spaces and $A \subseteq X$ be universally null. Then $A \times Y$ is residually null.
Lemma

Let X and Y be Polish spaces and $A \subseteq X$ be universally null. Then, for $\mu \in \mathcal{M}(X \times Y)$,

$$\mu^*(A \times Y) > 0 \iff (\exists x \in A)(\mu(\{x\} \times Y) > 0).$$

Lemma

Let X and Y be Polish spaces and $A \subseteq X$ be universally null. Then $A \times Y$ is residually null.

To finish the argument,

- Let A be universally null and non-meager
- $A \times Y$ is residually null
- By Kuratowski-Ulam Theorem, for any meager set M, $(A \times Y) \setminus M$ contains a perfect set of the form $\{x\} \times F$
- $(A \times Y) \setminus M$ is not universally null.
Extended Baire Property

Definition

We define $\text{EBP}(X)$ to be all sets A so that there exists an open set U so that $U \triangle A := (A \cup U) \setminus (A \cap U)$ is residually null. Additionally, given a map $f : X \to Y$ where X and Y are Polish, f is said to be \textbf{EBP-measurable} if $f^{-1}[V] \in \text{EBP}(X)$ for each open set $V \subseteq Y$.

As all meager sets are residually null, the class of $\text{EBP}(X)$ contains all sets with the Baire property.
Extended Baire Property

Definition

We define EBP(X) to be all sets A so that there exists an open set U so that $U \triangle A := (A \cup U) \setminus (A \cap U)$ is residually null. Additionally, given a map $f : X \to Y$ where X and Y are Polish, f is said to be **EBP-measurable** if $f^{-1}[V] \in \text{EBP}(X)$ for each open set $V \subseteq Y$.

As all meager sets are residually null, the class of EBP(X) contains all sets with the Baire property.

If sets which are residually null but non-meager exist, then the class EBP(X) is a finer class than the class of sets with the Baire property.
In a similar vein, we offer

Definition

Let X be a Polish space. We say that a set $A \subseteq X$ is

- **universally measurable** if A is μ-measurable with respect to all continuous measures or
- **residually measurable** if A is μ-measurable with respect to a co-meager collection of measures.

Clearly, all universally measurable sets are residually measurable.

For any closed meager subset F, pick some continuous measure μ on F and let $A \subseteq F$ be a non-μ-measurable set. Then A is residually measurable but not universally measurable.
In a similar vein, we offer

Definition

Let X be a Polish space. We say that a set $A \subseteq X$ is

- **universally measurable** if A is μ-measurable with respect to all continuous measures or
- **residually measurable** if A is μ-measurable with respect to a co-meager collection of measures.

Clearly, all universally measurable sets are residually measurable.
In a similar vein, we offer

Definition

Let X be a Polish space. We say that a set $A \subseteq X$ is

- **universally measurable** if A is μ-measurable with respect to all continuous measures or
- **residually measurable** if A is μ-measurable with respect to a co-meager collection of measures.

Clearly, all universally measurable sets are residually measurable.

For any closed meager subset F, pick some continuous measure μ on F and let $A \subseteq F$ be a non-μ-measurable set. Then A is residually measurable but not universally measurable.
Definition

Let G be an abstract multiplicative group with a Polish topology τ. We say that G (paired with τ) is a **Polish group** provided the maps

- $g \mapsto g^{-1}, G \to G$, and
- $(g, h) \mapsto gh, G^2 \to G$

are continuous.
Definition

Let G be an abstract multiplicative group with a Polish topology τ. We say that G (paired with τ) is a **Polish group** provided the maps

- $g \mapsto g^{-1}, \ G \to G$, and
- $(g, h) \mapsto gh, \ G^2 \to G$

are continuous.

Theorem (C., Kallman)

Let G and H be Polish groups and suppose $\phi : G \to H$ is a group homomorphism. If ϕ is EBP-measurable, ϕ is continuous.
\[
\begin{array}{ccc}
\sigma\text{-ideal} & \sigma\text{-algebra} & \text{continuity} \\
\downarrow & \downarrow & \\
\text{meager} & \text{BP} & \checkmark \\
\text{RN} & \text{EBP} & \checkmark \\
\text{UN} & & \\
\uparrow & & \\
\text{UM} & & \\
\downarrow & & \\
\text{RM} & & \\
\end{array}
\]
Martin’s Axiom

MA is related to the Baire Category Theorem.

Martin’s Axiom

Suppose X is a compact Hausdorff space with countable cellularity and let $\text{meag}(X)$ be collection of meager sets. Then $\text{cov}(\text{meag}) \geq c$.
Martin’s Axiom

MA is related to the Baire Category Theorem.

Martin’s Axiom

Suppose X is a compact Hausdorff space with countable cellularity and let $\text{meag}(X)$ be collection of meager sets. Then $\text{cov}(\text{meag}) \geq c$.

MA implies that, for a Polish space X and a cardinal $\kappa < c$,

- κ-length unions of meager sets are meager
- if $\mu \in \mathcal{M}_c(X)$, then κ-length unions of μ-null sets are μ-null
If we assume Martin’s Axiom holds, we obtain

Theorem (C.)

Suppose X is Polish. For any cardinal $\kappa < \mathfrak{c}$ and any family F of κ-many residually null sets, $\bigcup F$ is residually null.
Future Work

- X – compact Hausdorff space
- $\mathcal{M}(X)$ – regular Borel probability measures on X
- $\mathcal{M}(X)$ is a compact Hausdorff space
- residually null sets, $\mathbf{RN}(X)$ extend naturally here
Future Work

- X – compact Hausdorff space
- $\mathcal{M}(X)$ – regular Borel probability measures on X
- $\mathcal{M}(X)$ is a compact Hausdorff space
- residually null sets, $\text{RN}(X)$ extend naturally here

Residually Null Martin’s Axiom (RNMA)

Suppose X is a compact Hausdorff space with countable cellularity and let $\text{RN}(X)$ be collection of residually null sets. Then $\text{cov}(\text{RN}) \geq c$.
1. Is MA equivalent to RNMA?
1. Is MA equivalent to RNMA?
2. Does the residually null analog to the Kuratowski-Ulam Theorem hold?
1. Is MA equivalent to RNMA?

2. Does the residually null analog to the Kuratowski-Ulam Theorem hold?

3. Inspired by the construction of a residually null set which fails to be the union of a meager set and a universally null set in a space $X \times Y$, can such a set can be constructed in all Polish X?
Thank You!