Independence in generic expansions and fusions

Alex Kruckman

Indiana University, Bloomington

University of Maryland Logic Seminar
February 20, 2018
I’ll be telling you about the content of two papers:

- **Generic expansion and Skolemization in NSOP$_1$ theories** (with Nicholas Ramsey), arXiv:1706.06616, June 2017.
- **Interpolative fusions II: preservation results**, in preparation.

Outline:

1. **Background**
 - Notions of independence
 - Forking independence in simple theories
 - Kim independence in NSOP$_1$ theories

2. **Example: The generic theory of \mathcal{L}-structures**

3. **NSOP$_1$ preservation results**
 - Old results for simple theories
 - Generic expansions and generic Skolemizations
 - Interpolative fusions
Notions of independence

A major theme in model theory is the identification of abstract notions of independence in models of first-order theories.

Fix a complete first-order theory T and a large highly saturated and homogeneous “monster model” $M \models T$. By convention:

- All small models are elementary substructures $M \prec M$.
- All small tuples b are tuples from M.
- All small sets are subsets of M.

Small means size at most κ, where M is κ^+-saturated.

A “notion of independence” is presented as a ternary relation \mathcal{I} on subsets of M. For any small sets A, B, C, we read $A \mathcal{I} C B$ as "A is independent from B over C".
Notions of independence

A major theme in model theory is the identification of abstract notions of independence in models of first-order theories.

Fix a complete first-order theory T and a large highly saturated and homogeneous “monster model” $\mathbb{M} \models T$. By convention:

- All small models are elementary substructures $M \prec \mathbb{M}$.
- All small tuples b are tuples from \mathbb{M}.
- All small sets are subsets of \mathbb{M}.

Small means size at most κ, where \mathbb{M} is κ^+-saturated.
Notions of independence

A major theme in model theory is the identification of abstract notions of independence in models of first-order theories.

Fix a complete first-order theory T and a large highly saturated and homogeneous “monster model” $\mathbb{M} \models T$. By convention:

- All small models are elementary substructures $M \prec \mathbb{M}$.
- All small tuples b are tuples from \mathbb{M}.
- All small sets are subsets of \mathbb{M}.

Small means size at most κ, where \mathbb{M} is κ^+-saturated.

A “notion of independence” is presented as a ternary relation \downarrow on subsets of \mathbb{M}. For any small sets A, B, C, we read

$$A \downarrow \frac{B}{C} \text{ as “} A \text{ is independent from } B \text{ over } C \text{”.}$$
Algebraic independence (\downarrow^a)

One of the most basic examples is algebraic independence.

Definition

A formula $\varphi(x; a)$ is *algebraic* if it has only finitely many solutions. The *algebraic closure* of A, $\text{acl}(A)$, is the set of all elements $b \in \mathbb{M}$ which satisfy some algebraic formula with parameters from A.

Define $A \downarrow^a_C B \iff \text{acl}(AC) \cap \text{acl}(BC) = \text{acl}(C)$.
One of the most basic examples is algebraic independence.

Definition

A formula \(\varphi(x; a) \) is *algebraic* if it has only finitely many solutions. The *algebraic closure* of \(A \), \(\text{acl}(A) \), is the set of all elements \(b \in M \) which satisfy some algebraic formula with parameters from \(A \).

Define \(A \Downarrow^a C B \iff \text{acl}(AC) \cap \text{acl}(BC) = \text{acl}(C) \).

In any theory, \(\Downarrow^a \) always satisfies some basic properties:

- **Invariance**: If \(A \Downarrow^a C B \) and \(A'B'C' \equiv ABC \), then \(A' \Downarrow^a C' B' \).
- **Symmetry**: If \(A \Downarrow^a C B \), then \(B \Downarrow^a C A \).
- **Monotonicity**: If \(A' \subseteq A \), \(B' \subseteq B \), and \(A \Downarrow^a C B \), then \(A' \Downarrow^a C B' \).
- **Existence**: \(A \Downarrow^a C C \).
- **Extension**: If \(A \Downarrow^a C B \), and \(B \subseteq B' \), then there exists \(A' \equiv_{BC} A \) such that \(A' \Downarrow^a C B' \).
Definition (Shelah)

A formula $\varphi(x; b)$ divides over C if there is a C-indiscernible sequence $(b_i)_{i \in \omega}$ with $b_0 = b$ such that $\{\varphi(x; b_i) \mid i \in \omega\}$ is inconsistent.

Define $A \downarrow^d_C B \iff$ no formula in $\text{tp}(A/BC)$ divides over C.
Dividing independence (\downarrow^d) and forking independence (\downarrow^f)

Definition (Shelah)

A formula $\varphi(x; b)$ *divides* over C if there is a C-indiscernible sequence $(b_i)_{i \in \omega}$ with $b_0 = b$ such that $\{\varphi(x; b_i) \mid i \in \omega\}$ is inconsistent.

Define $A \downarrow^d C B \iff$ no formula in $\text{tp}(A/BC)$ divides over C.

\downarrow^d may not satisfy extension. This motivates the following definition:

Definition (Shelah)

A formula $\varphi(x; b)$ *forks* over C if it implies a disjunction $\bigvee_{i=1}^n \psi_i(x; b_i)$ such that each formula $\psi_i(x; b_i)$ divides over C.

Define $A \downarrow^f C B \iff$ no formula in $\text{tp}(A/BC)$ forks over C.
Dividing independence (\downarrow^d) and forking independence (\downarrow^f)

Definition (Shelah)

A formula $\varphi(x; b)$ divides over C if there is a C-indiscernible sequence $(b_i)_{i \in \omega}$ with $b_0 = b$ such that $\{\varphi(x; b_i) \mid i \in \omega\}$ is inconsistent.

Define $A \downarrow^d_C B \iff$ no formula in $\text{tp}(A/BC)$ divides over C.

\downarrow^d may not satisfy extension. This motivates the following definition:

Definition (Shelah)

A formula $\varphi(x; b)$ forks over C if it implies a disjunction $\bigvee_{i=1}^n \psi_i(x; b_i)$ such that each formula $\psi_i(x; b_i)$ divides over C.

Define $A \downarrow^f_C B \iff$ no formula in $\text{tp}(A/BC)$ forks over C.

Equivalently, \downarrow^f can be defined by “forcing” extension on \downarrow^d:

$A \downarrow^f_C B \iff$ for all $B' \supseteq B$, there is $A' \equiv_{BC} A$ such that $A' \downarrow^d_C B'$.

Alex Kruckman (IU Bloomington)
Simple theories are the “natural habitat” of forking independence.

Definition (Shelah ’80)

A formula $\varphi(x; y)$ has the *tree property* (TP) if there exist tuples $(a_\eta)_{\eta \in \omega^< \omega}$ and $k \geq 2$ such that for all $\sigma \in \omega^\omega$, $\{\varphi(x; a_\sigma|_n) \mid n \in \omega\}$ is consistent, but for any $\eta \in \omega^< \omega$, $\{\varphi(x; a_\eta|_n) \mid n \in \omega\}$ is k-inconsistent (meaning that any subset of size k is inconsistent).

T is *simple* if no formula has TP.
Simple theories

Simple theories are the “natural habitat” of forking independence.

Definition (Shelah ’80)

A formula $\varphi(x; y)$ has the *tree property* (TP) if there exist tuples $(a_\eta)_{\eta \in \omega^{< \omega}}$ and $k \geq 2$ such that for all $\sigma \in \omega^\omega$, $\{\varphi(x; a_{\sigma|n}) \mid n \in \omega\}$ is consistent, but for any $\eta \in \omega^{< \omega}$, $\{\varphi(x; a_{\eta|n}) \mid n \in \omega\}$ is k-inconsistent (meaning that any subset of size k is inconsistent).

T is *simple* if no formula has TP.

Theorem (Kim ’96)

- T is simple if and only if \Downarrow^f is symmetric: $A \Downarrow^f_C B \iff B \Downarrow^f_C A$.
- If T is simple, then $\Downarrow^f = \Downarrow^d$.

Alex Kruckman (IU Bloomington)
Characterizing \mathcal{L}

Theorem (Kim–Pillay)

Let T be a complete theory and \mathcal{L} any ternary relation on subsets of \mathbb{M}. Then T is simple and $\mathcal{L} = \mathcal{L}^f$ if and only if \mathcal{L} satisfies:

- **Invariance.**
- **Symmetry.**
- **Existence.**
- **Extension.**
- **Base monotonicity:** If $D \subseteq C \subseteq B$ and $A \mathcal{L} D B$, then $A \mathcal{L} C B$.
- **Right transitivity:** If $D \subseteq C \subseteq B$, $A \mathcal{L} D C$, and $A \mathcal{L} C B$, then $A \mathcal{L} D B$.
- **Finite character:** $A \mathcal{L} C B$ iff for every finite $B' \subseteq B$, $A \mathcal{L} C B'$.
- **Local character:** For all finite A and all B, there is $C \subseteq B$ such that $|C| \leq |T|$ and $A \mathcal{L} C B$.

... and the independence theorem: see next slide.
The independence theorem

Let $M \prec \mathbb{M}$ be a model, A and B sets, and a and a' tuples. Suppose:

1. $a \equiv_M a'$,
2. $A \downarrow_M B$,
3. $a \downarrow_M A$, and
4. $a' \downarrow_M B$.

Then there exists a'' such that:

1. $a'' \equiv_{MA} a$,
2. $a'' \equiv_{MB} a'$, and
3. $a'' \downarrow_M AB$.
The independence theorem

Let $M \prec \bar{M}$ be a model, A and B sets, and a and a' tuples. Suppose:

1. $a \equiv_M a'$,
2. $A \downarrow_M B$,
3. $a \downarrow_M A$, and
4. $a' \downarrow_M B$.

Then there exists a'' such that:

1. $a'' \equiv_M A a$,
2. $a'' \equiv_M B a'$, and
3. $a'' \downarrow_M AB$.
Stable theories

Forking independence was initially introduced to study stable theories.

Definition (Shelah)

A formula $\varphi(x; y)$ has the *order property* (OP) if there exist tuples $(a_i)_{i \in \omega}$ and $(b_j)_{j \in \omega}$ such that $M \models \varphi(a_i; b_j)$ if and only if $i \leq j$.

T is *stable* if no formula has OP.

Theorem

A simple theory T is stable iff \upharpoonright^f satisfies stationarity:

If $C = acl^{eq}(C')$ and $C \subseteq B$, then any type over C has a unique extension to a type over B which does not fork over C.
A map of the (first-order) universe

source: forkinganddividing.com
A map of the (first-order) universe

source: forkinganddividing.com
A map of the (first-order) universe

source: forkinganddividing.com
Definition

A global type $p(y) \in S_y(\mathcal{M})$ is M-invariant if for all formulas $\psi(y; z)$ and all $c \equiv_M c'$, $\psi(y; c) \in p \iff \psi(y; c') \in p$.
Definition

A global type \(p(y) \in S_y(\mathbb{M}) \) is \(M \)-invariant if for all formulas \(\psi(y; z) \) and all \(c \equiv_M c' \), \(\psi(y; c) \in p \iff \psi(y; c') \in p \).

Definition

If \(p(y) \in S_y(\mathbb{M}) \) is \(M \)-invariant, a \(p \)-Morley sequence over \(M \) is a sequence \((b_i)_{i \in \omega} \) such that \(b_i \models p(y)|_{Mb_0...b_{i-1}} \) for all \(i \).

Fact: Any \(p \)-Morley sequence over \(M \) is \(M \)-indiscernible.
Kim dividing and Kim independence (\downarrow^K)

Definition
A global type $p(y) \in S_y(M)$ is M-invariant if for all formulas $\psi(y; z)$ and all $c \equiv_M c'$, $\psi(y; c) \in p \iff \psi(y; c') \in p$.

Definition
If $p(y) \in S_y(M)$ is M-invariant, a p-Morley sequence over M is a sequence $(b_i)_{i \in \omega}$ such that $b_i \models p(y) |_{Mb_0 \ldots b_{i-1}}$ for all i.

Fact: Any p-Morley sequence over M is M-indiscernible.

Definition (Ramsey, after a suggestion of Kim)
A formula $\varphi(x; b)$ Kim divides over M if there is a global M-invariant type $p(y)$ extending $tp(b/M)$ and a p-Morley sequence $(b_i)_{i \in \omega}$ over M such that $\{ \varphi(x, b_i) \mid i \in \omega \}$ is inconsistent.

A formula $\varphi(x; b)$ Kim forks over M if it implies a disjunction of Kim dividing formulas.
Kim dividing and Kim independence (\Downarrow^K)

Definition (Ramsey, after a suggestion of Kim)

A formula $\varphi(x, b)$ **Kim divides** over M if there is a global M-invariant type $p(y)$ extending $\text{tp}(b/M)$ and a p-Morley sequence $(b_i)_{i \in \omega}$ over M such that $\{\varphi(x, b_i) \mid i \in \omega\}$ is inconsistent.

A formula $\varphi(x; b)$ **Kim forks** over M if it implies a disjunction of Kim dividing formulas.

Define $a \Downarrow^K_M b \iff$ no formula in $\text{tp}(a/Mb)$ Kim forks over M.
Kim dividing and Kim independence (\downarrow^K)

Definition (Ramsey, after a suggestion of Kim)

A formula $\varphi(x, b)$ *Kim divides* over M if there is a global M-invariant type $p(y)$ extending $\text{tp}(b/M)$ and a p-Morley sequence $(b_i)_{i \in \omega}$ over M such that $\{\varphi(x, b_i) \mid i \in \omega\}$ is inconsistent.

A formula $\varphi(x; b)$ *Kim forks* over M if it implies a disjunction of Kim dividing formulas.

Define $a \downarrow^K_M b \iff$ no formula in $\text{tp}(a/Mb)$ Kim forks over M.

We only define Kim independence over M when M is a model. Why?

Fact: If $M \prec \mathbb{M}$, then every type $q(y) \in \text{S}_y(M)$ extends to a global M-invariant type (e.g. any coheir extension).

This fails over an arbitrary set A.
Example: Generic binary functions

Let $\mathcal{L} = \{ f \}$, the language with a single binary function symbol.

Fact: The empty \mathcal{L}-theory has a model companion, $T^\emptyset_\mathcal{L}$.

$T^\emptyset_\mathcal{L}$ is the “generic theory of binary functions”, or the “theory of existentially closed magmas”.

Consider the formula $\phi(x; y, z) : f(x, y) = z$.

If $b \not\in M$ and $c \in acl(Mb)$, then $\phi(x; b, c)$ divides over M.

Let $(b_i, c_i)_{i \in \omega}$ be an M-indiscernible sequence such that $b_i = b$ for all i but the c_i are distinct. Then $\{ f(x, b_i) = c_i | i \in \omega \}$ is inconsistent.

But $\phi(x; b, c)$ does not Kim divide over M.

If $(b_i, c_i)_{i \in \omega}$ is a Morley sequence over M, then the b_i are all distinct, and $\{ f(x, b_i) = c_i | i \in \omega \}$ is consistent.
Example: Generic binary functions

Let $\mathcal{L} = \{f\}$, the language with a single binary function symbol.

Fact: The empty \mathcal{L}-theory has a model companion, $T^\emptyset_{\mathcal{L}}$. $T^\emptyset_{\mathcal{L}}$ is the “generic theory of binary functions”, or the “theory of existentially closed magmas”.

Consider the formula $\varphi(x; y, z) : f(x, y) = z$.

- If $b \notin M$ and $c \notin \text{acl}(Mb)$, then $\varphi(x; b, c)$ divides over M:
 Let $(b_i c_i)_{i \in \omega}$ be an M-indiscernible sequence such that $b_i = b$ for all i but the c_i are distinct. Then $\{f(x, b) = c_i \mid i \in \omega\}$ is inconsistent.
- But $\varphi(x; b, c)$ does not Kim divide over M:
 If $(b_i c_i)_{i \in \omega}$ is a Morley sequence over M, then the b_i are all distinct, and $\{f(x, b_i) = c_i \mid i \in \omega\}$ is consistent.
In fact, $\varphi(x; y, z)$ has $\text{TP}_2 \implies \text{TP}$, so T^\emptyset_L is not simple.

Definition

A formula $\varphi(x; y)$ has the *tree property* 2 (TP$_2$) if there exist tuples $(a_i, j)_{i, j \in \omega}$ such that for all $\sigma \in \omega^\omega$, $\{\varphi(x; a_n, \sigma(n)) \mid n < \omega\}$ is consistent, but for any $n < \omega$ and $i < j < \omega$, $\{\varphi(x; a_n, i), \varphi(x; a_n, j)\}$ is inconsistent. T is NTP$_2$ if no formula has TP$_2$.

Example: Generic binary functions
Example: Generic binary functions

In fact, $\varphi(x; y, z)$ has $\text{TP}_2 \implies \text{TP}$, so T_L^\emptyset is not simple.

Definition

A formula $\varphi(x; y)$ has the tree property 2 (TP$_2$) if there exist tuples $(a_{i, j})_{i, j < \omega}$ such that for all $\sigma \in \omega^\omega$, \(\{ \varphi(x; a_{n, \sigma(n)}) \mid n < \omega \}\) is consistent, but for any $n < \omega$ and $i < j < \omega$, \(\{ \varphi(x; a_{n, i}), \varphi(x; a_{n, j}) \}\) is inconsistent. T is NTP$_2$ if no formula has TP$_2$.

Let $(b_i)_{i < \omega}$ and $(c_{i, j})_{i, j < \omega}$ be distinct, and set $a_{i, j} = (b_i, c_{i, j})$.

- $\{ f(x, b_n) = c_{n, \sigma(n)} \mid n < \omega \}$ is consistent, while
- $\{ f(x, b_n) = c_{n, i}, f(x, b_n) = c_{n, j} \}$ is inconsistent.

Fact: In NTP$_2$ theories, dividing and Kim dividing agree over models.
NSOP$_1$ theories are the “natural habitat” of Kim independence.

Definition (Shelah ’04)

A formula $\varphi(x; y)$ has SOP$_1$ if there exist tuples $(a_\eta)_{\eta \in 2^{<\omega}}$ such that for all $\sigma \in 2^\omega$, $\{\varphi(x; a_\sigma|_n) \mid n \in \omega\}$ is consistent, but for any $\nu, \eta \in 2^{<\omega}$, if $\nu^\leq 0 \leq \eta$, then $\{\varphi(x; a_\eta), \varphi(x; a_\nu^\leq 1)\}$ is inconsistent.

T is NSOP$_1$ if no formula has SOP$_1$.
NSOP$_1$ theories are the “natural habitat” of Kim independence.

Definition (Shelah ’04)

A formula $\varphi(x;y)$ has SOP$_1$ if there exist tuples $(a_\eta)_{\eta \in 2^{<\omega}}$ such that for all $\sigma \in 2^{\omega}$, $\{\varphi(x; a_{\sigma\mid n}) \mid n \in \omega\}$ is consistent, but for any $\nu, \eta \in 2^{<\omega}$, if $\nu\upharpoonright 0 \leq \eta$, then $\{\varphi(x; a_\eta), \varphi(x; a_\nu\uparrow 1)\}$ is inconsistent.

T is NSOP$_1$ if no formula has SOP$_1$.

Theorem (Kaplan–Ramsey ’17)

- T is NSOP$_1$ if and only if $\mathrel{\downarrow^K}$ is symmetric.
- If T is NSOP$_1$, Kim forking equals Kim dividing.
- An NSOP$_1$ theory T is simple iff $\mathrel{\mathrel{\downarrow^f}_M \Leftrightarrow \downarrow^K_M}$ (in any theory, $\mathrel{\mathrel{\downarrow^f}_M \Rightarrow \downarrow^K_M}$).
Theorem (Kaplan–Ramsey ’17)

Let T be a complete theory and \downarrow any ternary relation on subsets of M. Then T is NSOP$_1$ and $\downarrow_M = \downarrow^K_M$ for all $M < \mathbb{M}$ if and only if \downarrow_M satisfies:

1. **Invariance**: If $A \downarrow_M B$ and $A' B' M' \equiv ABM$, then $A' \downarrow_M B'$.
2. **Symmetry**: If $A \downarrow_M B$, then $B \downarrow_M A$.
3. **Monotonicity**: If $A' \subseteq A$, $B' \subseteq B$, and $A \downarrow_M B$, then $A' \downarrow_M B'$.
4. **Existence**: $A \downarrow_M M$.
5. **Strong finite character and witnessing**: if $A \not\downarrow_M B$, then there is a formula $\varphi(x; b) \in \text{tp}(A/MB)$ such that for any $a' \models \varphi(x; b)$, $a' \not\downarrow_M b$. Moreover, $\varphi(x; b)$ Kim divides over M.
6. **The independence theorem**.
Using the new criterion for NSOP$_1$, all known examples of NSOP$_3$ theories have been shown to be NSOP$_1$ (Chernikov, Conant, K., Ramsey, others).
Fact: In any language \mathcal{L}, the empty \mathcal{L}-theory has a model companion $T^\emptyset_\mathcal{L}$, the theory of existentially closed \mathcal{L}-structures.

We call $T^\emptyset_\mathcal{L}$ the \textit{generic theory of \mathcal{L}-structures}.

When \mathcal{L} contains constant symbols, $T^\emptyset_\mathcal{L}$ is not complete. But the completions of $T^\emptyset_\mathcal{L}$ are classified by the isomorphism type of $\langle \emptyset \rangle$.

If \mathcal{L} is relational, then $T^\emptyset_\mathcal{L}$ is simple (and \aleph_0-categorical).

But if \mathcal{L} contains an n-ary function, $n \geq 2$, then $T^\emptyset_\mathcal{L}$ has TP$_2$.

Jeřábek showed that $T^\emptyset_\mathcal{L}$ is NSOP$_3$ for any language \mathcal{L}, and he asked if it is NSOP$_1$. (Later, he independently answered this question.)
Theorem (K.–Ramsey, independently Jeřábek)

For any language \mathcal{L}:

- $T^\emptyset_\mathcal{L}$ eliminates quantifiers, and $\text{acl}(A) = \langle A \rangle$, the substructure generated by A.
- \models^a satisfies the independence theorem over arbitrary sets.
- It follows easily that $T^\emptyset_\mathcal{L}$ is NSOP$_1$ and $\models^K = \models^a$ over models.
Theorem (K.–Ramsey, independently Jeřábek)

For any language \mathcal{L}:

- $T^\emptyset_{\mathcal{L}}$ eliminates quantifiers, and $\text{acl}(A) = \langle A \rangle$, the substructure generated by A.
- \downarrow^a satisfies the independence theorem over arbitrary sets.
- It follows easily that $T^\emptyset_{\mathcal{L}}$ is NSOP$_1$ and $\downarrow^K = \downarrow^a$ over models.

Jeřábek’s preprint contains a complete classification of $T^\emptyset_{\mathcal{L}}$:

<table>
<thead>
<tr>
<th>Relation arities:</th>
<th>≤ 0</th>
<th>≤ 1</th>
<th>any</th>
<th>any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function arities:</td>
<td>≤ 0</td>
<td>≤ 1</td>
<td>≤ 1</td>
<td>any</td>
</tr>
</tbody>
</table>

$T^\emptyset_{\mathcal{L}}$ is:

- strongly minimal
- stable*
- simple*
- NSOP$_1$

* If $T^\emptyset_{\mathcal{L}}$ is stable/simple, then it is superstable/supersimple if and only if there is at most one unary function symbol in \mathcal{L}.

* Alex Kruckman (IU Bloomington) Generic expansions and fusions UMD Logic Seminar 2/20/18 18 / 35
Recall that \downarrow^f satisfies base monotonicity in any theory.

Base monotonicity: If $D \subseteq C \subseteq B$ and $A \downarrow_D B$, then $A \downarrow_C B$.

But \downarrow^K and \downarrow^α lack base monotonicity in general.
Dividing and base monotonicity

Recall that $\mathrel{\downarrow^f}$ satisfies base monotonicity in any theory.

Base monotonicity: If $D \subseteq C \subseteq B$ and $A \mathrel{\downarrow_D} B$, then $A \mathrel{\downarrow_C} B$.

But $\mathrel{\downarrow^K}$ and $\mathrel{\downarrow^a}$ lack base monotonicity in general.

Theorem (K.–Ramsey)

In $T_{\mathcal{L}}^{\emptyset}$, $\mathrel{\downarrow^f} = \mathrel{\downarrow^d}$, and this relation is obtained by “forcing” base monotonicity on $\mathrel{\downarrow^a}$:

$$A \mathrel{\downarrow^d_C} B \text{ if and only if } A \mathrel{\downarrow^a_C} B \text{ for all } C \subseteq C' \subseteq \acl(BC).$$

For example, generically, if $f(a, b) = c$, then:

- $bc \mathrel{\downarrow^a} a$, and $bc \mathrel{\downarrow^f} a$
- $a \mathrel{\downarrow^a} bc$, but $a \mathrel{\downarrow^a_b} bc$, so $a \mathrel{\downarrow^f} bc$.
Preservation results: Adding generic structure

Recipe:

1. Start with a base \mathcal{L}-theory T.
2. Add new symbols: $\mathcal{L} \subseteq \mathcal{L}_{\text{new}}$.
3. And new axioms governing them: $T \subseteq T_{\text{new}}$.
4. Take the model companion (if it exists): T_{new}^*.

Example 0: Generic automorphisms

$L_{\text{new}} = L \cup \{\sigma\}$, a unary function symbol.

$T_{\text{new}} = T \cup \text{"\sigma is an } L \text{-automorphism"}$.

$T_{\text{new}}^* = T_{A}$, the theory T with a generic automorphism [e.g. if $T = \text{ACF}$, then $T_{A} = \text{ACFA}$]

The question of whether T_{A} exists is often nontrivial.
Recipe:

1. Start with a base \mathcal{L}-theory T.
2. Add new symbols: $\mathcal{L} \subseteq \mathcal{L}_{\text{new}}$.
3. And new axioms governing them: $T \subseteq T_{\text{new}}$.
4. Take the model companion (if it exists): T^*_new.

Example 0: Generic automorphisms

- $\mathcal{L}_{\text{new}} = \mathcal{L} \cup \{\sigma\}$, a unary function symbol.
- $T_{\text{new}} = T \cup \{\sigma \text{ is an } \mathcal{L}\text{-automorphism}\}$.
- $T^*_{\text{new}} = T_A$, the theory T with a generic automorphism [e.g. if $T = \text{ACF}$, then $T_A = \text{ACFA}$]

The question of whether T_A exists is often nontrivial.
Example 1: Generic expansions

- $\mathcal{L}_{\text{new}} = \mathcal{L}'$, any expansion of \mathcal{L} by new constant, function, and relation symbols.
- $T_{\text{new}} = T$, so the new symbols are interpreted arbitrarily.
- $T^*_{\text{new}} = T_{\mathcal{L}'}$, the generic expansion of T to \mathcal{L}'.

Consider the special case $\mathcal{L} = \emptyset$ and $T = \emptyset$. Then $T_{\mathcal{L}'}$ is just the generic theory of \mathcal{L}'-structures.
Example 1: Generic expansions

- $\mathcal{L}_{\text{new}} = \mathcal{L}'$, any expansion of \mathcal{L} by new constant, function, and relation symbols.
- $T_{\text{new}} = T$, so the new symbols are interpreted arbitrarily.
- $T^*_{\text{new}} = T_{\mathcal{L}'}$, the generic expansion of T to \mathcal{L}'.

Consider the special case $\mathcal{L} = \emptyset$ and $T = \emptyset$. Then $T_{\mathcal{L}'}$ is just the generic theory of \mathcal{L}'-structures.

Theorem (Winkler '75)

If T is model complete and eliminates \exists^∞, then $T_{\mathcal{L}'}$ exists.
Definition

A definable function $f_\varphi(y)$ is a *Skolem function* for the formula $\varphi(x; y)$ if $\mathcal{M} \models \varphi(f_\varphi(\bar{a}), \bar{a})$ whenever $\varphi(\mathcal{M}, \bar{a})$ is nonempty.
Generic Skolemizations

Definition

A definable function $f_\varphi(y)$ is a *Skolem function* for the formula $\varphi(x; y)$ if $M \models \varphi(f_\varphi(a), a)$ whenever $\varphi(M, a)$ is nonempty.

Example 2: Generic Skolemizations

1. $L_{\text{new}} = L_{\text{Sk}} = L \cup \{f_\varphi \mid \varphi(x; y) \text{ an } L\text{-formula}\}$.
2. $T_{\text{new}} = T \cup \{\forall y (\exists x \varphi(x; y) \rightarrow \varphi(f_\varphi(y); y)) \mid \varphi(x; y) \text{ an } L\text{-formula}\}$.
3. $T^*_{\text{new}} = T_{\text{Sk}}$, the generic Skolemization of T.

Theorem (Winkler ’75)

If T is model complete and eliminates \exists^∞, then T_{Sk} exists.
Generic Skolemizations

Definition

A definable function $f_\varphi(y)$ is a *Skolem function* for the formula $\varphi(x; y)$ if $M \models \varphi(f_\varphi(a), a)$ whenever $\varphi(M, a)$ is nonempty.

Example 2: Generic Skolemizations

- $\mathcal{L}_{\text{new}} = \mathcal{L}_{\text{Sk}} = \mathcal{L} \cup \{f_\varphi \mid \varphi(x; y) \text{ an } \mathcal{L}-\text{formula}\}$.
- $T_{\text{new}} = T \cup \{\forall y (\exists x \varphi(x; y) \rightarrow \varphi(f_\varphi(y); y)) \mid \varphi(x; y) \text{ an } \mathcal{L}-\text{formula}\}$.
- $T^*_{\text{new}} = T_{\text{Sk}}$, the generic Skolemization of T.

Theorem (Winkler ’75)

If T is model complete and eliminates \exists^∞, then T_{Sk} exists.
For the rest of this talk, assume T is model complete and eliminates \exists^∞.
Preserving simplicity

For the rest of this talk, assume T is model complete and eliminates \exists^∞.

Theorem (Chatzidakis–Pillay ’98)

- If T is stable and T_A exists, then T_A is simple.
- If T is simple and $\mathcal{L}' = \mathcal{L} \cup \{P\}$, where P is a unary relation symbol, then $T_{\mathcal{L}'}$ is simple.
Preserving simplicity

For the rest of this talk, assume T is model complete and eliminates \exists^∞.

Theorem (Chatzidakis–Pillay ’98)
- If T is stable and T_A exists, then T_A is simple.
- If T is simple and $\mathcal{L}' = \mathcal{L} \cup \{P\}$, where P is a unary relation symbol, then $T_{\mathcal{L}'}$ is simple.

Theorem (Nübling ’03)
- Let $\mathcal{L}' = \mathcal{L} \cup \{f\}$, where f is a unary function symbol. If T is simple with QE, and $\text{acl}(A) = A$ for all sets A, then $T_{\mathcal{L}'}$ is simple.
- Let T^a_{Sk} be the theory obtained by adding generic Skolem functions for algebraic formulas only. If T is simple, then T^a_{Sk} is simple.
Preserving simplicity

Each of the results on the previous slide (except generic expansion by a unary function, which Nübling proved by counting types), has the following proof strategy:

- Let $\mathcal{M}' \models T^*_\text{new}$ be a monster model and $\mathcal{M} \models T$ its reduct to \mathcal{L}.
- Define a notion of independence in \mathcal{M}' in terms of \downarrow_f in \mathcal{M}.

$$a \downarrow_C b \text{ in } \mathcal{M}' \iff \text{acl}_{T^*_\text{new}}(C a) \downarrow_C \text{acl}_{T^*_\text{new}}(C b) \text{ in } \mathcal{M}.$$

- Apply the Kim–Pillay theorem characterizing \downarrow_f in simple theories. The main difficulty is checking the independence theorem.
Preserving NSOP_1

Theorem (K.–Ramsey)

- For any $\mathcal{L}' \supseteq \mathcal{L}$, if T is NSOP_1, then $T_{\mathcal{L}'}$ is NSOP_1.
- If T is NSOP_1, then T_{Sk} is NSOP_1.

Proof strategy:

- Define a notion of independence in \mathcal{M}' in terms of \downarrow^K in \mathcal{M}.

 \[
 a \downarrow^K b \text{ in } \mathcal{M}' \iff \text{acl}_{T_{\text{new}}}^* (Ca) \downarrow^K_{C} \text{acl}_{T_{\text{new}}}^* (Cb) \text{ in } \mathcal{M}.
 \]

- Apply the Kaplan–Ramsey theorem characterizing \downarrow^K in NSOP_1. Again, the main difficulty is the independence theorem.
The generic Skolemization T_{Sk} has a Skolem function for every \mathcal{L}-formula, but not necessarily for every \mathcal{L}_{Sk}-formula. But we can iterate the construction to obtain an expansion with Skolem functions for all formulas.

Corollary (K.–Ramsey)

Any $NSOP_1$ theory T which eliminates \exists^∞ has an expansion to an $NSOP_1$ theory with built-in Skolem functions.
The generic Skolemization T_{Sk} has a Skolem function for every \mathcal{L}-formula, but not necessarily for every \mathcal{L}_{Sk}-formula. But we can iterate the construction to obtain an expansion with Skolem functions for all formulas.

Corollary (K.–Ramsey)

Any NSOP$_1$ theory T which eliminates \exists^∞ has an expansion to an NSOP$_1$ theory with built-in Skolem functions.

This result may turn out to be a useful technical tool: in an NSOP$_1$ theory with built-in Skolem functions, \downarrow^K makes sense over an arbitrary base C, since $\text{dcl}(C)$ is a model.
Theorem (Winkler ’75)

If T_1 and T_2 are theories in disjoint languages, and each is model complete and eliminates \exists^∞, then $T_1 \cup T_2$ has a model companion T.

Example:

T_1 is the theory of divisible abelian groups in the language $\{0, +, -\}$.

T_2 is the theory of an equivalence relation with infinitely many infinite classes in the language $\{E\}$.

T_1 and T_2 are both stable, but $\phi(x; y, z) : (x + y) E z$ has TP in T.

Let $(v_i)_{i \in \omega}$ be distinct, let $(e_j)_{j \in \omega}$ be representatives of distinct equivalence classes, and set $a_{i,j} = (v_i, e_j)$.

$\{(x + v_n) E e_{\sigma(n)} | n < \omega\}$ is consistent, while $\{(x + v_n) E e_i, (x + v_n) E e_j\}$ is inconsistent.
Theorem (Winkler ’75)

If T_1 and T_2 are theories in disjoint languages, and each is model complete and eliminates \exists^∞, then $T_1 \cup T_2$ has a model companion T.

Example:

- T_1 is the theory of divisible abelian groups in the language $\{0, +, -\}$.
- T_2 is the theory of an equivalence relation with infinitely many infinite classes in the language $\{E\}$.

T_1 and T_2 are both stable, but $\varphi(x; y, z) : (x + y)Ez$ has TP$_2$ in T.

Let $(v_i)_{i \in \omega}$ be distinct, let $(e_j)_{j \in \omega}$ be representatives of distinct equivalence classes, and set $a_{i,j} = (v_i, e_j)$.

$\{(x + v_n)Ee_{\sigma(n)} | n < \omega\}$ is consistent, while $\{(x + v_n)Ee_i, (x + v_n)Ee_j\}$ is inconsistent.
Theorem (Winkler ’75)

If T_1 and T_2 are theories in disjoint languages, and each is model complete and eliminates \exists^∞, then $T_1 \cup T_2$ has a model companion T.

Example:
- T_1 is the theory of divisible abelian groups in the language $\{0, +, -\}$.
- T_2 is the theory of an equivalence relation with infinitely many infinite classes in the language $\{E\}$.

T_1 and T_2 are both stable, but $\varphi(x; y, z) : (x + y)Ez$ has TP$_2$ in T.

Let $(v_i)_{i \in \omega}$ be distinct, let $(e_j)_{j \in \omega}$ be representatives of distinct equivalence classes, and set $a_{i, j} = (v_i, e_j)$.

- $\{(x + v_n)Ee_{\sigma(n)} \mid n < \omega\}$ is consistent, while
- $\{(x + v_n)Ee_i, (x + v_n)Ee_j\}$ is inconsistent.
If T_1 and T_2 are NSOP$_1$, is T NSOP$_1$?
Interpolative fusions

If T_1 and T_2 are NSOP$_1$, is T NSOP$_1$?

Yes! But we’ll prove this in a more general context:

1. \mathcal{L}_1 and \mathcal{L}_2 are first-order languages with intersection $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$ and union $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$.

2. T_1 is a complete \mathcal{L}_1-theory, and T_2 is a complete \mathcal{L}_2-theory. So $T_0 = T_1 \cap T_2$ is a complete \mathcal{L}_0-theory.

3. T_0, T_1, and T_2 all have quantifier elimination.
Interpolative fusions

If T_1 and T_2 are NSOP$_1$, is T NSOP$_1$?

Yes! But we’ll prove this in a more general context:

- \mathcal{L}_1 and \mathcal{L}_2 are first-order languages with intersection $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$ and union $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$.
- T_1 is a complete \mathcal{L}_1-theory, and T_2 is a complete \mathcal{L}_2-theory. So $T_0 = T_1 \cap T_2$ is a complete \mathcal{L}_0-theory.
- T_0, T_1, and T_2 all have quantifier elimination.

If the \mathcal{L}-theory $T_1 \cup T_2$ has a model companion T, we call T the \textit{interpolative fusion} of T_1 and T_2.

Minh Chieu Tran and Erik Walsberg initiated the study of the interpolative fusion (\textit{Interpolative Fusions I}, in preparation). They provide some sufficient conditions for its existence - we’ll ignore this issue here.
Analysis of the interpolative fusion

From now on, we additionally assume:

- The interpolative fusion T of T_1 and T_2 over T_0 exists.
- T_0 is stable with weak elimination of imaginaries (this gives stationarity for \mathcal{L} over all $C = \text{acl}(C')$).
Analysis of the interpolative fusion

From now on, we additionally assume:

- The interpolative fusion T of T_1 and T_2 over T_0 exists.
- T_0 is stable with weak elimination of imaginaries (this gives stationarity for \overline{f} over all $C = acl(C')$).

For any $A \subseteq M \models T$, let $cl(A)$ be the least set containing A which is algebraically closed in both $M_1 = M|L_1$ and $M_2 = M|L_2$.
From now on, we additionally assume:

- The interpolative fusion T of T_1 and T_2 over T_0 exists.
- T_0 is stable with weak elimination of imaginaries (this gives stationarity for $\downarrow f$ over all $C = \acl(C)$).

For any $A \subseteq M \models T$, let $\cl(A)$ be the least set containing A which is algebraically closed in both $M_1 = M|L_1$ and $M_2 = M|L_2$.

Theorem (K.)

The category of closed substructures of models of T and embeddings has the disjoint amalgamation property.

It follows that:

1. $\acl = \cl$ in T.
2. For any a, $tp(a)$ is determined by $qftp(\cl(a))$ ("Almost QE").
3. The completions of T are classified by the isomorphism type of $\cl(\emptyset)$.
Proof sketch: consistent amalgamation

The key fact is the following lemma:

Lemma (K.)

Fix $i = 1$ or 2. Let A be algebraically closed in \mathbb{M}_i, and let $p(x)$ and $q(y)$ be two \mathcal{L}_i-types over A. Then there are realizations $a \models p(x)$ and $b \models q(y)$ such that $a \frown_A b$ in \mathbb{M}_0.

(For this lemma, it suffices that T_0 is simple with stable forking and geometric elimination of imaginaries.)
Proof sketch: consistent amalgamation

The key fact is the following lemma:

Lemma (K.)

Fix $i = 1$ or 2. Let A be algebraically closed in \mathbb{M}_i, and let $p(x)$ and $q(y)$ be two \mathcal{L}_i-types over A. Then there are realizations $a \models p(x)$ and $b \models q(y)$ such that $a \upharpoonright f_A b$ in \mathbb{M}_0.

(For this lemma, it suffices that T_0 is simple with stable forking and geometric elimination of imaginaries.)

Then to amalgamate closed subsets of \mathbb{M}:

- Separately amalgamate their reducts in \mathcal{L}_1 and \mathcal{L}_2, using the lemma to make each $\upharpoonright f$-independent in the reduct to \mathcal{L}_0.
- The two amalgams are guaranteed to agree in \mathcal{L}_0 by stationarity of $\upharpoonright f$, and we can apply the Robinson Joint Consistency Theorem.
Preservation of NSOP$_1$

Theorem (K.)

If T_1 and T_2 are NSOP$_1$ and T_0 has 3-uniqueness (in addition to our other hypotheses), then T is NSOP$_1$.

(In particular, this applies to the case of fusions: when $\mathcal{L}_0 = \emptyset$ and T_0 is the theory of an infinite set.)
Preservation of NSOP$_1$

Theorem (K.)

If T_1 and T_2 are NSOP$_1$ and T_0 has 3-uniqueness (in addition to our other hypotheses), then T is NSOP$_1$.

(In particular, this applies to the case of fusions: when $\mathcal{L}_0 = \emptyset$ and T_0 is the theory of an infinite set.)

Definition

Suppose a_1, a_2, and a_3 enumerate algebraically closed sets, pairwise \downarrow^f-independent over a common algebraically closed subset A. For $1 \leq i < j \leq 3$, let a_{ij} be a tuple enumerating $\text{acl}(a_i, a_j)$. T_0 has *3-uniqueness* if $\text{tp}(a_{12}) \cup \text{tp}(a_{13}) \cup \text{tp}(a_{23}) \vdash \text{tp}(a_{12}a_{13}a_{23})$.

To get amalgamation in T, we assumed weak elimination of imaginaries \implies stationarity = “2-uniqueness” in T_0.

To get 3-amalgamation in T (the independence theorem), we assume 3-uniqueness $= \text{elimination of "generalized imaginaries"}$.
To prove the independence theorem in T:

- Given a, a', A, B, separately apply the independence theorem in the reducts to \mathcal{L}_1 and \mathcal{L}_2, obtaining a'' in each reduct.
- The two amalgams are guaranteed to agree on $\text{acl}_0(a''AB)$ in \mathcal{L}_0 by 3-uniqueness.
- To handle the elements which are in cl but not acl_0, we need a stronger form of the independence theorem which implies that we can take $\text{cl}(a''A) \upharpoonright_{\text{acl}_0(a''AB)} \text{cl}(a''B)$, $\text{cl}(a''A) \upharpoonright_{\text{acl}_0(a''AB)} \text{cl}(AB)$, and $\text{cl}(a''B) \upharpoonright_{\text{acl}_0(a''AB)} \text{cl}(AB)$ in \mathcal{L}_0.
- Then we can apply 3-uniqueness again, over $\text{acl}_0(a''AB)$ this time. This implies that the two amalgams agree on all of $\text{cl}(a''AB)$.
- Finally, apply the Robinson Joint Consistency Theorem.
The “reasonable” independence theorem

Let T_1 be an NSOP$_1$ theory with a reduct T_0 which is simple with stable forking and geometric elimination of imaginaries.

Define $A \fork C B \iff \text{acl}_1(AC) \fork_{\text{acl}_1(C)} \text{acl}_1(BC)$ in \mathbb{M}_0.

where acl_1 is algebraic closure in \mathbb{M}_1.

Example: If T_0 is the theory of an infinite set, then $\fork = \fork^a$.
The “reasonable” independence theorem

Let T_1 be an NSOP$_1$ theory with a reduct T_0 which is simple with stable forking and geometric elimination of imaginaries.

Define $A \vdash_C B \iff \operatorname{acl}_1(AC) \vdash_{\operatorname{acl}_1(C)} \operatorname{acl}_1(BC)$ in \mathbb{M}_0.

where acl_1 is algebraic closure in \mathbb{M}_1.

Example: If T_0 is the theory of an infinite set, then $\vdash = \vdash^a$.

Theorem (Independence theorem, Kaplan–Ramsey)

If $a \vdash^K_M b$, $a' \vdash^K_M c$, $b \vdash^K_M c$, and $a \equiv_M a'$, then there exists a'' such that $a'' \equiv_M b$, $a'' \equiv_M c$, and $a'' \vdash^K_M bc$.
The “reasonable” independence theorem

Let T_1 be an NSOP$_1$ theory with a reduct T_0 which is simple with stable forking and geometric elimination of imaginaries.

Define $A rown_c B \iff \acl_1(AC) \frown_{\acl_1(C)} \acl_1(BC)$ in \mathbb{M}_0.

where \acl_1 is algebraic closure in \mathbb{M}_1.

Example: If T_0 is the theory of an infinite set, then $\frown = \frown^a$.

Theorem (K. ’18, K.–Ramsey ’17 in the case $\frown = \frown^a$)

If $a \downarrow^K_M b$, $a' \downarrow^K_M c$, $b \downarrow^K_M c$, and $a \equiv_M a'$, then there exists a'' such that $a'' \equiv_M b$, $a'' \equiv_M c$, and $a'' \downarrow^K_M bc$, and further,

$$a'' \frown c, \quad a'' \frown b, \quad \text{and} \quad b \frown c.$$
Abstract independence without base monotonicity

The previous theorem can be proven replacing \Downarrow^r with any relation \Downarrow^* satisfying:

1. **Invariance**: If $A \Downarrow^*_C B$ and $ABC \equiv A'B'C''$, then $A' \Downarrow^*_{C'} B'$.
2. **Monotonicity**: If $A \Downarrow^*_C B$, $A' \subseteq A$, and $B' \subseteq B$, then $A' \Downarrow^*_C B'$.
3. **Symmetry**: If $A \Downarrow^*_C B$, then $B \Downarrow^*_C A$.
4. **Transitivity**: Suppose $C \subseteq B \subseteq A$. If $A \Downarrow^*_B D$ and $B \Downarrow^*_C D$, then $A \Downarrow^*_C D$.
5. **Normality**: If $A \Downarrow^*_C B$, then $AC \Downarrow^*_C B$.
6. **Full existence**: For any A, B, and C, there exists $A' \equiv_C A$ such that $A' \Downarrow^*_C B$.
7. **Finite character**: If $A' \Downarrow^*_C B$ for all finite $A' \subseteq A$, then $A \Downarrow^*_C B$.
8. **Strong local character**: For every cardinal λ, there exists a cardinal κ such that for all A with $|A| = \lambda$, all B, and all $D \subseteq B$, there exists $D \subseteq C \subseteq B$ with $|C| \leq \max(|D|, \kappa)$ and $A \Downarrow^*_C B$.

Alex Kruckman (IU Bloomington)
Generic expansions and fusions
UMD Logic Seminar 2/20/18 34 / 35
Preservation of simplicity

Theorem (Kaplan–Ramsey)

T is simple if and only if T *is NSOP*$_1$ *and* \downarrow^K *satisfies base monotonicity over models: for all* $M \prec N \prec \mathbb{M}$, *if* $a \downarrow^K_M N b$, *then* $a \downarrow^K_N b$.

Let acl_i be algebraic closure computed in \mathbb{M}_i.

Corollary (K.)

Suppose T_1 *and* T_2 *are simple,* T_0 *has 3-uniqueness, and* $\text{cl} = \text{acl}_1 = \text{acl}_2$. *Then* T *is simple.*

Proof.

Fix $M \prec N \prec \mathbb{M}$ *and* $a \downarrow^K_M N b$. *Then* $\text{cl}(Ma) \downarrow^K_M \text{cl}(Nb)$ *in* \mathbb{M}_i *for* $i = 1$ *and* 2. *Since* T_i *is simple,* $a \downarrow^f_M N b$ *in* \mathbb{M}_i. *Using base monotonicity for* \downarrow^f, $a \downarrow^f_N b$, *so* $\text{acl}_i(Na) \downarrow^f_N \text{acl}_i(Nb)$. *Since* $\text{cl} = \text{acl}_i$, $\text{cl}(Na) \downarrow^K_N \text{cl}(Nb)$ *in* \mathbb{M}_i. *Thus* $a \downarrow^K_N b$ *in* \mathbb{M}, *as desired.*